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This review surveys present knowledge of the nature and behaviour of point defects, 
especially vacancies. The general theoretical concepts and various experimental obser- 
vations connected with the formation and mobility of vacancies and their complexes, 
their effect on the physical properties of metals, are described. The formation of second- 
ary defects by vacancy condensation, the interaction between vacancies and solute atoms 
and some general ideas about point defects, are also discussed in detail. 

1. Introduction 
Point defects are crystalline irregularities of atomic 
dimensions. They exist in a crystal at thermal 
equilibrium while other defects, e.g. dislocations 
and grain boundaries, are thermodynamically un- 
stable. The existence of point defects in thermal 
equilibrium was first recognized in the case of ionic 
crystals in relation to the electrical conductivity 
inherent in ionic diffusion. It was in about 1950 
that the existence of thermal equilibrium vacancies 
was firmly attributed to metals too, and again in 
relation to the mechanism for diffusion. 

Point defects are important imperfections in 
crystals because they influence many physical 
properties of crystalline materials and they are 
responsible for many diffusion controlled pro- 
cesses. The mechanical properties of metals are 
also sensitive to the presence of point defects 
because of their interactions with dislocations. 
Diffusion processes, which often govern many 
solid state reactions, are largely controlled by the 
migration of point defects, primarily vacancies. 

In this review a description of the nature and 
behaviour of point defects is given. This includes 
the presence of vacancies in thermal equilibrium, 
lattice distortions around point defects, formation 
energy of a vacancy, binding energy between va- 
cancies in thermal equilibrium, lattice distortions 
around point defects, formation energy of a 
vacancy, binding energy between vacancies, mo- 
bility of point defects, the methods of production 
of point defects, their effect on the properties of 
�9 19 76 Chapman and Hall Ltd. Prin ted in Great Britain. 

metals, and their role in diffusion processes. We 
shall also summarize some theories of point de- 
fects and impurities or other defects. 

It is impossible in the space available to survey 
all the important fields connected with the subject. 
Our discussion is limited, therefore, to areas which 
we felt to be of most basic significance and to some 
selected problems which serve as examples of more 
general phenomena connected with point defects. 
Such a selection is, of course, somewhat arbitrary, 
and reflects to some extent the authors' own 
interest. Some topics are mentioned only briefly 
and rather qualitatively but references are given to 
the more important papers. Inevitably, some im- 
portant aspects are omitted, such as the role of 
vacancies on high temperature mechanical pro- 
perties, the investigation of vacancies by positron 
annihilation and so on. 

2. Point defects due to thermal equilibrium 
The free enthalpy, G, of a crystal (given by G = 
H --  T S  at temperature T, where H is the enthalpy 
of the crystal and S is the entropy) changes on 
the introduction of point defects. This occurs in 
three ways: (1) by the internal energy of their 
formation energy, EF, (2) by the entropy of 
formation, SF, and (3) by the configurational 
entropy of the crystal, S c. The entropy change, 
SF, arises mainly from the change in the vibra- 
tional frequency of the atoms surrounding the 
point defect. 

In order to ~alculate the thermal equilibrium 
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vacancy concentration, C0 v ,  an elementary treat- 
ment is applied [1] which leads to the expression 

Co v = exp [ T j ' e x p  ( kr)" (1) 

The concentration of interstitials in thermal equi- 
librium, C I, is derived in a similar way: 

CI~ = q e x p t - k - / ' e x p  [ kTJ" (2) 

Here, S~- and H I refer to interstitial atoms and q is 
the number of interstitial sites in each normal 
lattice site. 

In any crystal, only those point defects which 
do not disturb the electrical equilibrium of the 
crystal can be formed, i.e. the crystal remains out- 
wardly neutral. For metals this condition does not 
mean any restriction, since a neutral atom is 
removed or inserted. With ionic crystals the situ- 
ation is quite different. If, for instance, a vacancy 
were formed by the removal of a negative ion, the 
electrical equilibrium would be upset. Conse- 
quently, in an ionic crystal, positive and negative 
vacancies are always formed simultaneously 
(Schottky defects). Another possibility is the for- 
mation of a vacancy - interstitial pair of the same 
type (Frenkel defect). If  the crystal contains im- 
purities whose ions have an electrical charge dif- 
ferent from that of the base material, the vacancy 
concentration (i.e. the number of vacancies created 
at positive and negative lattice sites) may deviate 
from that of the pure crystal. 

As seen from Equations 1 and 2, the concen- 
trations of point defects at temperature T is mainly 
determined by their formation energies. According 
to theoretical calculations, H~ in f c c  metals is a 
few times larger than H v ,  and hence most of the 
point defects in thermal equilibrium are expected 
to be vacancies. The same is also generally true for 
b c c and h c p metals. This is seen by taking E~. 
t o  be 2 eV and E v to be 1 eV. The ratio c~CVo is 
then about 10 -s at 1000K with S v =S~- and 
q = 1. This prediction has been confirmed by ex- 
periments. Therefore, the point defects in thermal 
equilibrium are predominently vacancies, and so 
we shall confine our discussion to them. 

3. Formation energy of a vacancy 
The most important factor determining the equi- 
librium concentration of vacancies is the forma- 
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tion enthalpy, H v.  In the following, a short review 
of the theroretical and the experimental results 
for H v is given. 

3.1. Theore t i ca l  
In most of the theoretical calculations, the follow- 
ing procedure has been applied: an atom is removed 
from a normal lattice site inside a crystal, leaving 
behind a vacant lattice site, and is placed on the 
surface (Fig. 1). Therefore, the volume of the 
crystal increases while the surface area is substan- 
tially unaltered. Relaxation of the lattic and re- 
distribution of electrons around the vacancy must 
be taken into account. 

Figure 1 Process of formation of a vacancy. 

3. 1.1. Calculation methods for H V using 
macroscopic concepts 

Brooks [2] calculated the change of internal 
energy, E v, in the following way: upon creating 
a vacancy, a spherical surface of radius r s is formed 
inside the crystal. This surface contributes to the 
surface energy proportional to rs 2. The vacancy will 
tend to decrease in size and, therefore, decrease 
the surface energy by distorting the surrounding 
material. Thisrelaxation causes an increase in t h e  
elastic energy proportional to ras e2 (er s is the dis- 
placement of the surface). The sum of the surface 
energy and the elastic energy has a minimum at a 
particular value of e; this minimum value is con- 
sidered to be the formation energy. Brook's result 
gives about 1.8 eV for a vacancy in copper. The 
formation energy of an interstitial atom was also 
estimated in the same manner and found to be 
about 9 eV in copper. This method is only a rough 
approximation, in that it uses macroscopic con- 
cepts, e.g. surface energy and linear elasticity. 



3. 1.2. Calculation E v using quantum 
mechanics 

All calculations were based upon the free electron 
model with a hard ion core. The formation of a 
vacancy in a crystal is assumed to increase the vol- 
ume of a box containing free electrons, with a 
corresponding decrease in the electronic energy. 
At the position of the vacancy, the potential energy 
for electrons differs from that of the others. The 
perturbing potential causes an increase in the 
kinetic energy of the electron. These changes were 
calculated using the variational method [3], and 
the self consistent method [4] for copper. The 
perturbing potential was taken to be equal to the 
negative of the potential due to a copper ion. This 
calculation uses essentially the same method as 
that applied by Fuchs [5-7]  for the cohesive 
energy of copper, and hence includes all other 
effects contributing to the electronic energy, such 
as the Coulomb and the exchange energy. Fumi 
considered a vacancy as an impurity atom o f - -1  
valency [8] and calculated the change in the 
kinetic energy using Friedel's sum rule [9] to 
estimate the number of electrons disturbed by the 
vacancy. However, Fumi's calculation does not 
include the changes in the Coulomb energy and in 
the exchange energy, as pointed out by Lamer 
[10]. 

Besides the electronic energy discussed so far, 
one must also consider the energy due to ion inter- 
action. Two neighbouring ions repel each other. 
This is a closed shell repulsion and is due mainly 
to the exchange interaction between the electrons 
in the different closed shells. The energy due to 
this effect is usually represented by a Born-Mayer 
potential of the form 

where re is the equilibrium nearest-neighbour 
separation distance. The parameters D and a are 
determined empirically by comparing the elastic 
constants calculated from this potential with the 
experimentally determined values. When a vacancy 
is formed, the atoms surrounding it move inward 
and the distance between the ions increases, causing 
a decrease in the repulsive potential energy. In the 
case of copper, this energy decrease amounts to 
about 0.3 eV. The formation energy of a vacancy 
resulting from this calculation, from electronic and 
ionic energy considerations, turns out to be about 

1.2eV. A calculation made by Seeger and Mann 
[11] gives results. 

Thus, the various values calculated for the 
formation energy of a vacancy in copper lie be- 
tween 0.91 and 1.45 eV. It should be noted that the 
predominant term determining the formation 
energy of a vacancy is the change of the electronic 
energy. However, for an interstitial atom, the ion 
pair potential is predominant in determining the 
formation energy. This may be true for other "full" 
metals, where the nearest neighbour distance is al- 
most equal to the ion diameter. 

A rigorous quantum mechanical calculation for 
metals other than monovalent ones has not yet been 
made. Nevertheless, Johnson [12], assuming an 
interatomic potential including repulsion and 
attraction, has programmed a calculation for the 
formation energy of a vacancy in 7 - -  iron and in 
nickel, that yields results of about 1.5 eV. 

3.2.  Expe r imen ta l  m e t h o d s  
The formation energy of a vacancy has been deter- 
mined fairly accurately by various experimental 
methods. The experimental techniques are divided 
into two groups: techniques to determine the con- 
centration of thermal equilibrium vacancies at high 
temperatures, and quenching high-temperature 
thermal equilibrium concentrations to low temper- 
atures, where the concentrations may be deter- 
mined by appropriate measurements. The concen- 
trations of vacancies are normally determined by 
measuring the change of some physical property 
which is considered to be a monotonic function of 
the concentration. However, most physical proper- 
ties depend both on the presence of vacancies, and 
on temperature. Therefore, it is of critical import- 
ance in the determination of vacancy concentra- 
tions to differentiate the effect of temperature 
from the effect of vacancies on the physical pro- 
perty being measured. The simplest way to do this 
is to measure the property at a constant tempera- 
ture low enough to suppress the temperature effect 
as much as possible. For example, the electrical 
reasistivity depends linearly on the concentration 
of vacancies if aggregation of vacancies is negligible. 
At low temperatures, the thermal component of 
resistivity is small and the effect of vacancies may 
be large enough to be measured accurately. At these 
low temperatures, however, the equilibrium con- 
centration is too small to be detected. If, on the 
other hand, the equilibrium concentration of the 
vacancies at a high temperature can be quenched 
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into the metal, it can then be determined at a low 
temperature by measuring the electrical resistivity. 
This technique is one of the most powerful meth- 
ods for determining the equilibirum concentration 
of vacancies and hence their "formation energy". 

A disadvantage in the quenching method is the 
possible aggregation or annihilation of some of the 
vacancies during quenching. It is then more desir- 
able to determine the equilibrium concentration at 
a high temperature. One can define equilibrium 
studies of point defects as investigations in which 
the point defect concentrations are either equal or 
very close to the concentrations of  thermal equili- 
brium. The experimental investigations of point 
defects in such a case need in situ measurement of  
the chosen property and may be divided into three 
classes: 

(1)determination of the nature and quantitative 
measurement of the concentration of point defects 
in thermal equilibrium. For metals some of these 
techniques are (a)the measurement of the elec- 
trical resistivity, specific heat or thermal expansion 
and their variation with temperature; (b) the com- 
parison of the relative change of specimen length 
AI/lo and of the relative change of lattice parameter, 
2~a/ao; (c) the measurement of the 7 radiation re- 
sulting from the annihilation of positrons trapped 
at vacancies. 

(2) Measurement of tracer diffusion, in parti- 
cular of self diffusion and of the transport of 
matter, e.g. thermo- or electrotransport. These 
measurements give information on the diffusion 
coefficients and on the diffusion mechanism of 
point defects. 

(3) Resonance and relaxation experiments which 
are capable of giving information on the jump fre- 
quencies of nuclei and on self diffusion mech- 
anisms. 

Separation of the effect of the thermal com- 
ponent of the properties studied from the vacancy 
contribution is the most critical part of the in situ 
methods. If a single property is measured as a 
function of temperature, the separation can be 
made as follows: the temperature dependence of 
the property is measured at a low enough tempera- 
ture for the effect of thermal vacancies to be 
negligible, and is extrapolated to the high tempera- 
ture. Another method is to calculate the thermal 
component at high temperatures. The thermal 
component so determined is subtracted from the 
measured values. Both these estimates of the high 
temperature thermal component do not, however, 
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always turn out to be valid. 
Electrical resistivity, specific heat and thermal 

expansion measurements have been widely applied 
to determine the vacancy formation energy. This 
is, in fact, the activation enthalpy but for normal 
pressures, the term p A V  can be neglected, and so 
the two are identical. For complete reviews and 
references concerning the equilibrium investigations 
of point defects, we refer to the articles by Seeger 
and Mehrer [13], Seeger [14], Kraftmakher and 
Strelkov [15], [16] and Hoch [17]. 

It is of historical interest to note that Meechan 
and Eggleston [18] were the first to measure the 
resistivity of copper and of gold as a function of 
temperature to determine the effects of vacancies. 
They fitted the data below 500 ~ C to an equation 
of the type 

R = a + b T + c T  2. 

The logarithm of the extra resistivity over that due 
to the extrapolated curve of this equation above 
600 ~ C was plotted against the reciprocal of the 
absolute temperature. A straight line was obtained 
and the formation energy was calculated to be 
0.9 +- 0.5 eV in copper and 0.67 +- 0.07 eV in gold. 
With the calculated resistivity per at. % vacancies 
and the observed extra resistivity, they estimated 
the concentration of thermal vacancies at or near 
the melting point to be of the order of 10 -2 . The 
formation energies so determined are found to be 
close to the theoretical values. The estimated con- 
centrations, however, are too large. For example, 
if we accept E v = 0.9 eV, then Equation 1 gives a 
concentration of about 5 x 10 -4 exp (SV/k).  In 
order to obtain a concentration of the order of 
10 -2 , the exponential factor would have to be 
larger than 20, but most investigators consider 
this to be too large. Moreover, Nicholas [19] 
pointed out other possibilities for explaining the 
observed extra resistivity without introducing 
vacancies. 

In order to determine the equilibirum concen- 
trations of vacancies by measuring a property as 
a function of temperature, the thermal component 
of the property must be determined unambigu- 
ously. A simultaneous determination of the lattice 
parameter and thermal expansion is the only tech~ 
nique so far reported to establish this point. The 
expansion of a specime n is caused by both the 
thermal dilatation of the lattice due to the change 
of temperature and the presence of vacancies, which 
results in an increase in the number of lattice sites 



together  wi th  the  lat t ice re laxat ion around vacan- 

cies. The X-ray de te rmina t ion  o f  the lat t ice para- 

me te r  detects  only the thermal  expansion and the 

re laxat ion a round vacancies but  no t  the presence 

o f  vacant  sites. Therefore ,  taking the dif ference 

be tween  the f ract ional  change in the lat t ice para- 

me te r  and in length,  one may  obtain  the number  

o f  vacant  lat t ice sites. There is l i t t le uncer ta in ty  

in considering that  thermal  expansion o f  the 

lat t ice causes the same fract ional  change in length 

and lat t ice parameter .  Eshelby [20] showed that  

r andomly  dis t r ibuted centres o f  d i la ta t ion cause 

the same effect  on length and the X-ray measured  

lat t ice parameter .  Accordingly ,  Balluffi  and 

S immons  [21] applied the Eshelby t r ea tmen t  to 

centres o f  di la ta t ion o f  a n o n e l a s t i c  nature ,  e.g. 

vacancies. Hence,  the increase in the a tomic  sites 

A N / N  is given by 

TABLE I Entropy and energy of formation of a vacancy in pure metals (According to Kimura and Maddin [35]). 

Metal Formation Formation Method* Reference 
entropy energy 
S F / k  E F (eV) 

Au - 0.79 R 
- 0.95 R 
- 0.98 R, L 
- 0.98 RS 
- 0.97 RR 

0.96 R 
- 0.97 C 
- 0.98 LS 
1.0 0.94 EQ 

A1 - 0.76 R 
- 0.76 R 
- 0.79 R 

- 0.79 R 
- 0.76 RS 
- 0.75 R, L 
- 0.73 RR 
2.4 0.76 EQ 

Ag - 1.01 C 
1.06 R 
1.10 R 

1 . 5  1 . 0 9  EQ 

Cu 1.00 R 
- 1 . 0 6  R 

- 1 . 1 4  R 

1.5 1.17 EQ 

Pt - 1.4 R 
- 1 . 1 8  R 

- 1 . 2 3  R 

- 1 . 2 0  R 

- 1 . 5 1  R 

W - 3.32 R 

Pb 0.7 0.49 EQ 

Mg - 0.89 R 

Sn - 0.51 R 

* C, calorimetric measurements. 
LS, length change measurement with specimen size correction. 
R, resistivity measurement. 

RS, resistivity measurement with specimen size correction. 
RR, resistivity measurement with quenching rate correction. 
EQ, length and lattice parameter measurement at thermal equilibrium. 

Lazarev and Ovcharenko [36 ] 
Bradshow and Pearson [37] 
Bauerle and Koehler [38] 
Takamura et  al. [39] 
Mori et al. [40] 
Jeannotte and Macklin [41] 
de Sorbo [42] 
Takamura [43] 
Simmons and Balluffi [29] 

Bradshow and Pearson [44] 
Panseri and Federighi [45 ] 
de Sorbo and Turnbull [46] 
de Sorbo [47] 
Okazaki and Takamura [48] 
Detert and Stander [49] 
Bass [50] 
Simmons and Balluffi [51 ] 

Gertsriken and Novikov [52] 
Quere [53, 54] 
Doyama and Koehler [55, 56] 
Simmons and Balluffi [27] 

Airoldi et aL [57] 
Hasiguti et al. [58] 
Wright and Evans [59] 
Simmons and Balluffi [28] 

Bradshow and Pearson [60] 
Lazarev and Ovcharenko [ 36 ] 
Ascoli et  aL [61 ] 
Baccella et al. [62] 
Jackson [63] 

Schultz [64, 65] 

Feder and Nowick [ 31 ] 

Beevers [66] 

de Sorbo [67] 
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where L is the length and a the lattice parameter. 
If the point defects formed are interstitial atoms, 
( A L / L )  --  (2xa/a) is negative. In none of the metals 
so far investigated in equilibrium has this sign 
been found to be negative. This fact shows clearly 
that in equilibrium C I is negligible compared to 
C v.  An important feature of the above expression 
is that it gives the change in the number of atomic 
sites regardless of the amount of lattice relaxation 
around the defect. 

Measurements of this type published in the liter- 
ature were done on AI [22-26] ,  Ag [27], Cu [28], 
Au [29], Pb [3O, 311, Na [32,331 and Cd [34]. 
Some of the results obtained are given in Table I. 

Another important method which is suitable 
for measuring the equilibrium concentration of 
vacancies due to high temperatures is the quenching 
method, if the loss of vacancies (together with any 
possible production of them, e.g. by quenching 
strains) during quenching can be avoided or accu- 
rately corrected. A correction is possible by chang- 
ing the specimen size or quenching rate. A detailed 
discussion of the vacancies produced by quenching 
will be given in the chapter dealing with the pro- 
duction of point defects, but the values determined 
by the quenching method are also given in Table I. 
The vacancy concentrations after quenching are 
determined usually by measuring the extra re- 
sistivity. In general, even when quenching from 
high temperatures by a high quenching rate, there 
is still vacancy aggregation to some extent, and this 
affects the property being measured. In calculating 
the formation energy, it is assumed, however, that 
association is negligibly small or that the property 
being measured is not changed by the association 
(i.e. the same contribution arises from two isolated 
vacancies as from a divacancy). Since fair agree- 
ment exists between the values obtained by the 
equilibrium methods (not affected by the associ- 
ation) and those obtained by the quenching method 
(corrected for associations of vacancies during 
quenching), the effect of associations may not be 
very appreciable at high temperatures. Associ- 
ations, however, become quite important at low 
temperatures if excess concentrations of vacancies 
due to high temperature thermal equilibrium are 
frozen-in. 

4. Lattice distortion around point defects 
If  a metal ion in a crystal is removed from the 
interior and is placed on the surface of the crystal 
creating simply a new substitutional atom site 
without any relaxation, the crystal expands by one 
atomic volume. In practice, however, the net 
volume expansion due to the introduction of a 
vacancy into a crystal is less than one atomic 
volume because of the lattice distortion arising 
from the displacement of the surrounding atoms 
from their equilibrium positions, so that the total 
free energy of the crystal is minimized. 

According to Eshelby [20, 68], the volume 
change AV on introducing a centre of dilatation, 
of strength C, into a homogeneous isotropic elastic 
body with a stress-free surface is given by 

AV = 47r3"C, (3) 

with T = 3 (1 -- u)/(1 + u), where u is the Poisson's 
ratio and T a constant, about 1.5 for most metals. 
For vacancies in an infinite medium Equation 3 is 
valid. With use of this equation the change of 
volume of a body containing a vacancy can be 
determined taking i~ato consideration the diffusion 
of an atom to the surface whenever a vacancy is 
created [69]. If  no other change took place in the 
lattice, every vacancy would increase the volume 
of the body as we mentioned before by one atomic 
volume. However, because of the image displace- 
ment, the volume of the crystal decreases by [69] : 

Agi = (T--  1)f~. 

where (~ is the atomic volume. The resultant change 
of volume in a body containing a single vacancy is 
consequently 

AV = f2 - - (3 ' - -  1)f2 

= ( 5 . - 1 1  
\ +11 

Taking u = �89 one obtains AV = 0.5D., which is in 
very good agreement with the values obtained for 
gold experimentally (0.57 + 0.05) f~[55], and 
(0.45 + 0.1)f2 [28]. In this approximation of an 
isotropic elastic continuum where the atomic 
structure is smeared out, the elastic displacement 
caused by a centre of dilatation in a finite crystal 
is given in a sperically symmetric form as u = Cr/r a 
+ Br. Here B is a constant expressed by B = 2C 
( 1 -  2u)/R a (1 + u) for a spherical body with a 
radius R. 
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As a first approximation, such continuum theory 
may give useful information about the lattice dis- 
tortion, but the actual displacement of atoms in 
the vicinity of a defect may not be in such a 
simple form. 

The interaction of atoms in metals roughly con- 
sists of two contributions, one is from ion-core 
repulsion and the other is from valency electrons. 
For noble metals and transition metals such as 
iron, cobalt  and nickel the contribution from the 
ion-core repulsion is more important, while the 
electric contribution is dominant for alkali metals 
and some non-transition metals such as zinc and 
aluminium. However, it is difficult for any metals 
to describe these contributions separately in the 
explicit form. For convenience, suitable two-body 
interaction potentials have been used for the calcu- 
lations. The typical potentials frequently used so 
far are the Born-Mayer, Morse and composite 
cubic types. 

In the usual method for the calculation of 
atomic displacements around a point defect, the 
crystal is divided into three regions, i.e. region I 
around the defect, a boundary region II around 
region I, and the outermost region III. In region I, 
atoms are allowed to interact with surrounding 
atoms according to the pair-wise interaction force 
assumed. Atoms in regions II and III are treated as 
discrete particles embedded in elastic continuum, 
but atoms in region III do not interact with those 
in region I. When the assumed potential gives only 
repulsive forces as in the case of the Born-Mayer 
potential, it is necessary to stabilize the model crys- 
tal by an appropriate method. The most stable 
configuration around the defect can be obtained 
by minimizing the crystal energy with reference to 
the displacement of each atom. 

Calculations show that the nearest neighbours 
around a vacancy are relaxed inwards for noble 
metals and several transition metals, while in metals, 
such as aluminium they are relaxed outwards. The 
nature of the atom displacement around a vacancy 
can be more easily understood from the oscillating 
pair-wise interaction potential derived from the 
pseudo-potential theory (see for example, Harrison 
[70] ; Torrens and Gerl [71] ). 

5. Binding energy between vacancies 
In 1952 Seitz [72] suggested that the energy of 
association of a pair of vacancies in copper may be 
large, leading to formation of divacancies which 
are very mobile. The first estimate for the binding 

energy of a divacancy E2Bv was due to Bartlett and 
Dienes [73] who considered the binding energy 
between two atoms to be approximately 1/6 of 
the cohesive energy, and thus estimated E2Bv to be 
about 0.5eV for copper. Weizer and Girifalco 
[74] calculated the binding energy of a divacancy 
in copper using a Morse potential function and 
they determined its value to be 0.64eV. They 
also found that two vacancies attract each other 
if the vacancies are less than 7 A apart but they 
do not interact appreciably at separations greater 
than 73,. More rigorous quantum mechanical 
calculations have been performed by Seeger and 
Bross [75], resulting in a value of about 0.3 eV 
for noble metals. 

A number of investigators have employed com- 
puters to calculate the defect energies. Assuming 
interatomic potentials, the energy of a crystal 
containing several hundreds to several thousands 
of atoms is calculated as a function of atomic con- 
figuration around a defect. The minimum energy 
obtained is the defect energy. It is naturally ex- 
pected that the calculated value depends on the 
form of the assumed interatomic potential. The 
effect of redistribution of electrons is not taken 
into account. Hence, at present, the absolute 
value of the defect energy may be taken as reliable. 

The concentration of divacancies C2v present 
in equilibirum with single vacancies with a concen- 
tration Clv for fc c metals can be given as [76]: 

C2v = 6 C~v exp [kT J' (4) 

with E~ v - - 2 E  F - - E  TM where E~- v is the forma- 
tion energy of a divacancy. 

This is derived by equating the rate of formation 
of divacancies to the rate of their decomposition. 
The formation rate is 

dt - 84C~vvl"exp  [ kT I, 

where E v is the activation energy for migration of 
a vacancy and vl the atomic vibration frequency 
around a single vacancy. The factor 84 is the num- 
ber of effective atomic sites from which a vacancy 
jumps into one of the nearest neighbour sites to 
form a divacancy. This is the product of the num- 
ber of nearest  neighbour sites of one vacancy 
(= 12) and the number of non-common neighbours 
(= 7) for each of these 12 sites. The rate of de- 
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composition is: 

v 2v d C 2 v _  14v2C2v exp EM +EB / 
dt kT )" 

The factor 14 is the number of  ways a divacancy 
can dissociate. Each vacancy can move into seven 
sites which are not the common nearest neighbours 
of the other vacancy. It is assumed that vl = v2 
and that the interaction between vacancies ranges 
only to the nearest neighbour atomic sites. Equa- 
tion 4 holds for non-equilibrium concentrations 
of  vacancies if the total number of vacant lattice 
sites remains constant or changes very slowly, com- 
pared with the rate of establishing single vacancy-  
divacancy equilibrium. Because gold is widely 
investigated we shall take it as an example. In 

TABLE II Ratio of divacancy concentration to single 
vacancy concentration at various temperatures, and bind- 
ing energies, EI~ V (E TM F is taken to be 1.0eV). After 
Kimura and Maddin [35] 

Binding 
energy C2v/Cav 
E~ v 

(eV) 300 K 500 K 1000 K 1200 K 

0.1 8• 10 -14 4X10 -8 8X10 -4 4X10 -3 
0.2 3.2X10 -12 4X10 -7 2.5• -7 1 X10 -5 
0.3 1.6 X 10 -1~ 4 X 10 -6 4 X 10 -6 2.9 X 10 -5 

Table II the ratio C2v/Cav for gold at various tem- 
peratures with Cav at thermal equilibrium, is 
shown. The binding energy E~ v is assumed to be 
0.1, 0.2 and 0.3eV. Even for the largest value 
assumed (0.3eV), the number of divancies is, 
at most, about 2% of the single Vacancies. If 
quenching is ideal, i.e. no divancies are formed 
during quenching, the quenched-in resistivity con- 
sists of the resistivity due to single vacancies 
(96% of the vacant sites) and of that due to 
divacancies (4% of the vacant sites). If  the resist- 
ivity decrease is Ap by the formation of a divac- 
ancy, the fractional difference between the total 
resistivity due to N single vacancies and that due 
to 98% single vacancies and 2% divacancies is 0.04 
Ap/p. This ratio is not known, but may be assumed 
to be about 0.1. Thus we may have about 0.4% 
difference between resistivities with and without 
vacancy association at the melting point. Below 
800 ~ C, however, the difference is about 0.1%. 
Since the formation energy is usually determined 
by quenching from below 850 ~ C in gold, vacancy 
aggregation affects the calculated value of the 

536 

formation energy only very slightly. 
Experimental determinations of the binding 

energy have not yet been made. Somewhat indirect 
estimates, however, have been made by several 
investigators. Since the mobility of divacancies in 
f c c  metals is considered to be much larger than 
that of single vacancies, a careful investigation of 
the decay rate of excess vacancies may provide 
information about the concentration of divacancies. 
The activation energy for the migration of single 
vacancies can be calculated as the difference be- 
tween the activation energy for self-diffusion and 
the formation energy of vacancies. If  the observed 
activation energy for excess vacancy decay is 
smaller than the migration energy of single vacan- 
cies, the difference is attributed to the existence of 
divacancies. Thus the binding energy is estimated, 
assuming the equilibrium between the concen- 
tration of single and divacancies and a value for 
the activation energy fordivacancy migration, to be 
between 0.1 and 0.3 eV in gold (e.g. [13, 77-82]  ). 
It should be noted that the decay of excess vacan- 
cies strongly depends on the purity of the specimen 
and a technique is required to detect directly 
the existence of divacancies and so an accurate 
determination of the binding energy is not yet 
possible. 

No experiments have been attempted to deter- 
mine the binding energies of clusters containing 
more than three vacancies. This is an even more 
difficult problem than determining the divacancy 
binding energy. 

6. Mobility of point defects 
6.1. Mobility of single vacancies 
Vacancies and interstitials in a solid are mobile at 
a sufficiently high temperature since, to change its 
position, a defect has to surmount a potential 
barrier. This process is usually treated on the basis 
of absolute reaction rate theory [83], although 
some attempts have been made recently at a 
dynamic approach [84]. For a detailed discussion 
about this problem we refer to both the work of 
Damask and Dienes [85] and Peterson [86] in 
which the frequency, v, of a vacancy jump is given 
by 

t_ v/ 
v = BZvo'exp ~ kT)  (5) 

with B = exp (SV/k), where S v is the activation 
entropy for the vacancy migration, Z is the co- 
ordination number, Vo the atomic vibration fre- 



quency and E v the activation energy for migration 
of a vacancy. This equation, based upon thermal 
equilibrium between the normal state and the 
activated state, may be applied to the migration 
of excess vacancies, e.g. to an arrangement when 
a crystal is not in thermal equilibrium. A consider- 
ation of the migration of vacancies is important 
because of its role in self-diffusion in metals. At 
this stage a connection can be made with the dif- 
fusion in solids. The probability of atomic migra- 
tion (the rate of self-diffusion) is proportional to 
the probability of finding a vacancy next to an 
atom (the vacancy concentration Cv) and to the 
frequency of an atomic jump into the vacancy 
position v /Z .  Hence, for the self-diffusion co- 
efficient D we have 

p D-Cv . 
If diffusion takes place under thermal equilibrium 
conditions (a condition for "normal" diffusion), 

~ v  + ~ v )  
�9 -~F LSM~ 

D ~ exp k-T J" 

Hence, the activation energy for self-diffusion 
E D is 

ED = E v + E v .  (6) 

If  diffusion is caused primarily by excess vacancies 
the apparent activation energy for self diffusion 
is E v .  Diffusion enhanced by excess vacancies 
happens also in low temperature ageing of quenched 
supersaturated solid solutions. 

Quantum mechanics calculations of  the migra- 
tion energy have been made together with calcula- 
tions of the formation energy of a vacancy in order 
to understand the mechanisms of self-diffusion. 
The calculations, however, are less reliable than 
those for the formation energy. This is so because 
the migration energy is considered to be the dif- 
ference between the energy of a vacancy in the 
normal site and that in the saddle point configur- 
ation, both of which are calculated with fairly 
large inaccuracies. 

The activation energy for migration of a single 
vacancy can be determined experimentally from 
the temperature dependence of their decay, if only 
single vacancies exist in excess. As will be described 
later, excess vacancies can be produced in a 
metal by various methods. Except for the quench- 
ing method, however, other defects, e.g. inter- 
stitial atoms and dislocations, are also produced. 
The physical properties suitable for detecting 
vacancies are usually affected by these defects as 
well, and hence it is difficult to attribute to 
vacancy decay, without ambiguity, any change in 
a physical property during annealing. Moreover, 
the process of vacancy decay may be affected 
by the existence of other defects, even when 
divacancy formation does not occur. 

Many investigations have been carried out to 
determine the activation energy of vacancy migra- 
tion in quenched metals. However, a dependably 
accurate determination has not been made because 
of two reasons: (1)the formation of the more 
mobile divacancies, and (2) the effect of impurity 
atoms. In noble metals single vacancies move with 
an activation energy between 0.6 and 1 eV. 

A reliable method for estimating the migration 
activation energy of single vacancies, particularly 
in aluminium, is to subtract the determined for- 
mation energy, E v ,  from the determined self-dif- 
fusion energy, E D. With radioactive tracer tech- 
niques, the activation energy for self-diffusion, 
E o,  can be determined fairly accurately, and the 
formation energy of a vacancy, E v ,  can also be 
determined fairly accurately from equilibrium or 
from quenching methods. The relationship between 
E D, E v and E ~  is well established and the result- 
ing values shown in Table III, are fairly reliable, if 
the effect of divacancies on self-diffusion is small. 

6.2.  Mobi l i ty  of  d ivacancies  
Divacancies are more mobile than single vacancies, 
i.e. the divacancy migration activation energy is 
smaller than that of a single vacancy. The explana- 
tion is given by studying the mechanism of the 
divacancy motion. When a divacancy moves, then 

T A B L E I I I Activation energy for self-diffusion, E D (experimental), formation energy of a vacancy, E V (experimental), 
and the calculated migration energy E V (= E D --E V) in some fc c metals 

Metal E D E F EVM (= E D --E V) Reference for E D 
(eV) (eV) (eV) 

Au 1.84 0.96 0.88 Gilder and Lazarus [ 87 ] 
Ag 1.92 1.09 0.83 Tomizuka and Sonder [88] 
Cu 2.05 1.1 0.95 Kuper et al. [89] 
A1 1.48 0.76 0.72 Lundy and Murdock [90] 
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one atom, the common nearest neighbour atom of 
the two vacancies, jumps into one of the vacant 
sites. The resistance to the atomic jump comes 
mainly from the closed shell repulsion between ion 
cores. The lattice around a divacancy is more 
relaxed than around a single vacancy. Moreover, 
for a divacancy the lattice has more tolerance for 
local atomic displacements than for a single vac- 
ancy. 

Rigorous calculations of the activation energy 
are difficult and experiments have not yet been 
made to provide a check. However, we may con- 
sider the divacancy migration energy in noble 
metals to be 0.2 to 0.3 eV, smaller than that for a 
single vacancy. The situation may be somewhat 
different in b c c metals, where a divacancy may 
take a second-nearest neighbour configuration in 
making one jump. Also, the atomic bond character 
is partly directional. 

6.3. Mobility of vacancy clusters 
Clusters of more than three vacancies may migrate, 
but with a mobility smaller than that for single 
vacancies or divacancies. If we consider trivacancies 
as an example, de Jong and Koehler [79] and 

(a) (b) 

(c) (d) 

(e) 
Figure 2 Five configurations of a trivacancy. (After 
Doyama and Cotterill [91]). (a) 90 ~ 0.75 eV; (b) 120 ~ 
1.20 eV; (c) 180 ~ 1.13 eV; (d) 60 ~ ; (e) tetrahedron. The 
energies are relative to configuration (d). 
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Doyama and Cotterill [91] classified them in to 
five possible configurations (Fig. 2). The most 
compact trivacancy has the configuration that three 
vacancies lie on a (1 1 1) plane forming an equi- 
lateral triangle (Fig. 2d). The atom which is the 
common nearest neighbour of the three vacancies 
probably moves to the centre of  the tetrahedron 
[1 0 0] (Fig. 2e). The other configurations are not 
compact and have only two bonds between vac- 
ancies. If a trivacancy possesses the configuration 
shown in Fig. 2d or e, it cannot migrate without 
changing its configuration. At first glance, con- 
figuration (d) appears to be mobile, but careful 
consideration shows that it merely oscillates since 
only one atom can jump into one of the three 
vacant sites and thus the atom simply moves back 
and forth between the original position and one 
of the three vacant sites. In order to move a tri- 
vacancy of configuration (d), it must first take the 
configuration shown in (a) or (b). A possible 
sequence of configurational changes for trivacancy 
migration is shown in Fig. 3. The mobility is deter- 
mined by the step with the highest activation 
energy. The first step, i.e. breaking the configur- 
ation (d), probably requires the highest activation 
energy, because an additional energy to break the 
configuration must be added to the activation 
energy for the atomic jump. As described above, 

( a )  (b )  

I i i , 

L-" L-" I/ 

(c) (d)  

(e) 
Figure 3 An example of a trivacancy migration sequence. 



the energy of configuration (d) is smaller than that 
of configuration (a) or (b). The activation energy 
for an atomic jump may be somewhat smaller 
than that for a divacancy since in the latter case 
there is more lattice relaxation. 

Considering these two effects, one may take the 
trivacancy migration energy (configuration d) to 
be about the same as for a single vacancy. Since 
more than two steps are involved in one unit jump 
of a trivacancy, the net mobility of a trivacancy 
would be smaller than that for a single vacancy. 
However, a trivacancy of configuration (e) may be 
less mobile than that of confiuration (d), because 
configuration (e) is considered to have a smaller 
energy than configuration (d). As the temperature 
is lowered, a trivacancy tends to transform to con- 
figurations of smaller energy. Hence, at low tem- 
peratures, e.g. room temperature, trivacancies may 
be considered to be essentially immobile. 

Clusters larger than three vacancies would be 
even less mobile than trivacancies. While the con- 
figurational energy and mobility of vacancy clusters 
are important in discussions of excess vacancy 
decay, we have no method at present to determine 
experimentally these energies accurately. 

7. Production of point defects 
We are concerned here with the production of 
point defects in excess of those present in equili- 
brium concentrations. The most common ways of 
generating excess point defects are [93] : 

(1) thermal equilibration and quenching from 
high temperatures; 

(2) plastic deformation under various condi- 
tions; 

(3) damaging the crystal by irradiation with 
nuclear particles; 

(4) controlled deviations from stoichiometric 
composition; 

(5) depositing thin films on a cold substrate by 
evaporation. 

As mentioned before, the quenching technique 
is one of the most powerful methods for studying 
the vacancies in metals. Its main advantage is that, 
at least in certain conditions, only vacancies are 
produced in the metal while both vacancies and 
interstitials are, in general, created after plastic 
deformation or irradation. This section will deal 
mainly with the quenching technique, with the 
other methods discussed in less detail. A review 
about the irradiation technique is reported recently 
by W. Schilling et al. [94]. 

7.1. Production of point defects by 
quenching 

As described above, thermal equilibrium concen- 
trations of point defects exist at all temperatures. 
In f c c, b c c and most likely h c p metals, vacancies 
are the predominant defects existing in thermal 
equilibrium. The concentration near the melting 
point TM is about 10 -4, and about 10 -8 at tem- 
peratures near TM]2. Therefore, if a specimen is 
cooled very rapidly from high temperatures, an 
excess concentration of vacancies may be retained 
at low temperatures. The aim of a quenching ex- 
periment is, therefore, to quench the specimen from 
an elevated temperature, TQ, to a relatively low 
temperature, rapidly enough to freeze-in the 
defects present at TQ. Ideally, it is desirable to 
freeze-in the entire equihbrium vacancy defect 
population in an unperturbed state and, after 
quenching from TQ, to measure the Cnv indivi- 
dually allowing the absolute determination of the 
various S~v(T) and EnFv(T). 

Unfortunately, this aim cannot completely be 
realized in practice. We shall try to examine in 
some detail the various problems which arise when 
one attempts to extract quantitative information 
on vacancy defects from quenching experiments. 

7. 1.1. Perturbing effects present in 
quenching experiments 

The following effects can take place during quench- 
ing: 

(1) clustering of vacancies during quenching; 
(2) loss of vacancies to sinks such as dislocations 

during the quench; 
(3) Generation of additional defects by plastic 

deformation occuring during the quench. 
Let us consider these effects in some detail. 

7.1.1.1. Clustering of  vacancies during quenching. 
As the crystal is rapidly cooled, it becomes super- 
saturated in vacancies which tend to cluster to at 
least some degree in cases where negative binding 
energies exist. This effect is impossible to avoid, 
since the number of jumps required for a given 
defect to meet another during the quench is 
generally much smaller than the total number of 
jumps which the defect could make before being 
frozen-in during even fast quenches. The number 
of jumps, m, made by a vacancy in time, t, as 
given by Cottrell is [95] : 

rn = ZvoAt exp { -  EvM /kT} (7) 
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where Z is the co-ordination number, Uo the atomic 
vibration frequency, and A is an entropy factor. 

Lomer [96] studied this problem and estimated 
a critical temperature. If a specimen is quenched 
from below this critical temprature, T e, at a cool- 
ing rate dT/dt,  vacancies are frozen-in effectively. 

Recently, Balluffi et al. [97] examined the 
formation of divacancies from monovacancies 
during the quenching of an fc c metal. They ig- 
nored any defect losses and considered only the 
redistribution of monovacancies and divacancies. 
On the basis of the approximate equations: 

dClVdt - 168uC~vexp - k T )  

+ 28 uCzv exp �9 -k-T J' 

Clv + C~v = C = constant, 

r = T(t),  

and using the work of Koehler et al. [98] con- 
cerning an estimate of Tc, and taking into account 
the calculations carried out by Cotterill [99] for 
more complicated defect clusters, they concluded: 

(1) At least some degree of clustering in the 
form of small mobile clusters occurs during usual 
quenching in systems where the clusters possess 
significant binding energies. The results are rela- 
tively insensitive to the quenching rate. The 
extent of such clustering naturally depends directly 
upon the properties of the small clusters. 

(2) Clusters concentrations become frozen-in 
rather abruptly at some critical temperature Tc 
during quenching. An expression for Tc is given 
by: 

E~v "exp {(E~v + EMlv)/kTc} 

Tc = l@kTcx/( 1 + 48Clv expE~v / kTc )  

(3) The formation of relatively large immobile 
clusters may be generally avoided during quench- 
ing. 

(4) Even if the concentrations of the individual 
clusters could be measured individually after 
quenching as a function of quenching rate, at- 
tempts to extrapolate the results to an infinite 
quenching rate in order to obtain the individual 
cluster concentrations originally present in thermal 
equilibrium at TQ would most likely fail. 
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7.1.1.2. Vacancy losses during quenching. In 
specimens quenched at finite rates a certain frac- 
tion of the supersaturated vacancies is lost at 
sinks which are present in the specimen during the 
quench. Possible sinks include the free surface, 
grain boundaries, subgrain boundaries (dense planar 
arrays of dislocations), the random three-dimen- 
sional dislocation network and the dislocations 
which may be generated by plastic deformation 
during the quench. The relative importance of the 
sinks mentioned above depends, of course, upon 
their relative densities and the efficiency with 
which they absorb vacancy defects. 

Flynn et al. [100], in one of the most complete 
studies, found that for gold there is a total defect 
resistivity (concentration) loss which increases as 
the quenching rate is decreased or the quenching 
temperature is increased. At sufficiently low 
quenching temperatures, essentially all losses were 
avoided by quenching at moderately fast rates. 
Loss data showing the same general features have 
been obtained in other investigations with gold 
[40, 101,102], platinum [103] and aluminium 
IS01. 

Flynn et al. [100] showed that a reasonably 
accurate approximate solution to this problem 
could be obtained in the form of an eigenfunction 
expansion, and furthermore, showed that for 
linear cooling rates the fractional loss of the total 
vacancy concentration to fixed sinks is a function 
which depends only on the combined parameter 
DQTQrQ where DQ is the defect diffusivity at 
TQ and rQ is the time required for the quench. 
However, in order to calculate actual losses for 
given types of sinks it is necessary to carry out 
detailed calculations utilizing the appropriate 
eigenfunctions. Balluffi et aL [97] avoided these 
complications and calculated defect losses in a 
typical quenched system by direct numerical 
integration of the defect diffusion equation in the 
presence of an appropriate temperature and time 
dependent boundary condition at the sinks. They 
concluded the following: 

(1) Appreciable vacancy defect losses, primarily 
to dislocations and to a less extent to subgrain 
boundaries, generally occur in specimens quenched 
from elevated tempeatures. 

(2) A relatively simple model based upon defect 
diffusion-limited losses to existing dislocations (and 
subgrain boundaries) is capable of explaining the 
main features of existing loss data. 

(3) Exact calculations of losses are complicated 



by: (a)a lack of precise knowledge regarding the 
sink efficiency of dislocations; (b) possible in- 
creases in the dislocation sink density during the 
quench; and (c) a lack of knowledge of the degree 
of defect clustering during the quench and the 
effect of such clustering on the losses. 

(4) The method of correcting for defect losses 
during quenching by different rates and extra- 
polating the quenched-in increment to infinite 
rate in order to obtain equilibrium concentrations 
is a legitimate technique. 

7.1.1.3. Effect o f  quenching strains. A quenched 
specimen is strained during rapid quenching. There 
are two causes for this strain. The first is the 
internal stress, due to differential thermal con- 
traction which is present when the outside of the 
specimen is cooled relative to the interior; the 
second is the applied stress due to the hydro- 
dynamic drag which is exerted on the specimen if 
it is plunged into a liquid-quenching medium. 
Plastic straining by these means may affect quench- 
ing results in two ways: (a)the straining produces 
unwanted extra point defects and dislocations; and 
(b) the extra dislocations act as sinks for both the 
original equilibrium vacancy population and any 
point defects generated during the quench. The 
effect of plastic straining may, therefore, be to 
either increase or decrease the defect concentration 
obtained after quenching relative to the equilib- 
rium concentration depending upon the relative 
magnitudes of the two effects described above. 

The various possibilities have been investigated 
extensively by Jackson [104] both theoretically 
and experimentally. Jackson's results show that 
the thermally generated strains increase with in- 
creased wire diameter, whereas the hydrodynami- 
cally induced strains behave in the opposite 
manner. Furthermore, the thermally generated 
strains are very small (of the order of 10 -s) for 
specimens with diameters similar to those usually 
employed in quenching experiments (i.e. 0.04 cm). 
On the other hand, the hydrodynamic strains may 
become as large as 3 x 10 -3 for wires of diameter 
near 0.005 cm. 

Takamura [43] observed elongation of a speci- 
men due to repeated quenching. Takamura quen- 
ched gold wires of various diameters and found 
that the concentration of quenched-in vacancies 
depended on the specimen diameter. He estimated 
the loss of vacancies during quenching, assuming 
that this loss is inversely proportional to the 

cooling rate. He found that the concentration 
actually quenched into the specimen is larger 
than the concentration expected when the loss is 
considered (the equilibrium concentration minus 
the loss during quenching). In some cases, the total 
quenched-in concentration increases with the speci- 
men diameter. We would expect the opposite be- 
cause the cooling rate would be smaller and hence 
the loss would be larger in the larger specimen. 
Takamura attributed this effect to the production 
of vacancies by quenching strains. The plastic 
strains due to quenching are of the order of 10 -3 
or less and the concentration of vacancies attributed 
to these quenching strains is of the order of 10 -s. 
Hence the rate of vacancy production would be 
10 -2 or more per unit strain. The rate of vacancy 
production due to simple tension at low tempera- 
tures is of the order of 1 0  . 4  . The production rate 
does not increase with the deformation tempera- 
ture [105]. Therefore, it seems difficult to attri- 
bute the Takamura observation simply to the 
production of vacancies by quenching strains. 

Balluffi et al. [97] discussed the problem ex- 
tensively and arrived at the following conclusions: 

(1) Thermally induced quenching strains during 
the water-quenching of normal specimens (diameter 

0.041 cm) are small i.e. ~ 10 -s. 
(2) Hydrodynamic stretching strains during the 

water-quenching of normal specimens are larger, 
i.e. ~ 8 x 1 0  . 4  for diameters ~ 0.041 cm and 

34 x 10 -4 for diameters ~ 0.005 cm. 
(3) The number of vacancies generated by 

quenching strains is expected to be small relative 
to the quenched-in ones except for the case of thin 
specimens quenched into liquid from very low 
quenching temperatures. 

(4) Quenching strains of the order of 10 -3 may 
be expected to generate enough dislocations to 
absorb a significant fraction of the vacancies 
initially present at elevated quenching tempera- 
tures. 

(5) At elevated temperatures quenching strains 
cause a net loss of vacancies, since the sink effect 
of the dislocations generated is larger than the 
effect of the extra point defects produced by the 
deformation. 

Finally, we see that it is impossible at present to 
calculate accurately the number of divacancies and 
larger vacancy clusters formed during quenching or 
to discuss the details of probable vacancy produc- 
tion by quenching strains. It is, however, possible 
to eliminate experimentally the effects due to the 
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quenching rate and the quenching strains. The ex- 
trapolation of the quenched-in vacancy concen- 
tration to that for infinite quenching rate is one 
example. In the experiment of Mori et  al. [106], 
however, the effect of quenching strains was not 
eliminated. Takamura [43] employed wires of 
various sizes and the results were extrapolated to 
zero radius. The quenching rate of a wire with zero 
radius should correspond to an infinite quenching 
rate and the quenching strains are thus eliminated. 
Takamura and his co-workers obtained the forma- 
tion energy of a vacancy to be 0.96 and 0.76 eV in 
gold and in aluminium, respectively. 

7.2. Production of point defects by plastic 
deformation 

Considerable experimental evidence has been ac- 
cumulated which indicates that point defects are 
produced by plastic deformation [85 ,107-111] .  
However, it has not yet been firmly established 
what proportion of vacancies and interstitials are 
generated and how they are produced during strain- 
ing. Many models have been proposed for the 
formation of point defects by moving dislocations. 
They are based either on the mutual annihilation 
of dislocations other than screws or on the non- 
conservative motion of jogs in dislocations with a 
strong screw component. These models (up to 
1962) have been reviewed by Balluffi et  al. [111 ], 
who conclude that a number of models are available 
to explain defect production either as isolated 
defects or in the form of rows or platelets. For 
complete reviews we refer to the papers by Clare- 
brough et al. [112] and van den Beukel [113]. 
We shall restrict our discussion to some recent 
papers on the subject. 

A problem often considered is whether the 
point defects produced are vacancies or interstials 
or both. If the moving jogs were formed by the 
intersection of a moving dislocation with a 
stationary forest dislocation, vacancies and inter- 
stitials will be produced in approximately equal 
numbers. Cottrell [114] showed that if the pre- 
dominant intersections are between two moving 
dislocations, the jogs should be mainly of the 
interstitial type. This conclusion has not been 
confirmed by Zsoldos [115], who found that the 
vacancy production is not negligible in this case. 
When the dislocations are split into partials, con- 
struction of the partials at the jog and their be- 
haviour under an applied stress have to be con- 
sidered. Hirsch [116] concluded that an applied 
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stress tends to constrict an interstitial producing 
jog, making it glissile, whereas the vacancy pro- 
ducing jogs will be extended and remain sessile. 
For that reason point defects formed by low tem- 
perature deformation should be predominantly 
vacancies. Weertman [117] examined the role of 
partial dislocations attached to a double stacking 
fault. He concluded that vacancies and interstitials 
are formed in approximately equal numbers. 
Pfeffer et al. [118] argue that Hirsch and Weertman 
consider long jogs only, and that the theory cannot 
be applied to jogs of atomic dimensions (elementary 
jogs). These authors develop an atomic theory of 
these elementary jogs, which can dissociate as 
well as complete dislocations. They show that both 
vacancies and interstitials can be produced by a 
non-conservative motion of dissociated elementary 
jogs. Further, it was found that point defect pro- 
duction will increase with decreasing stacking 
fault energy. 

Friedel [119] doubts whether point defect pro- 
duction by the moving jog mechanism should be 
important in plastic deformation. He argues that 
for the rather small dislocation velocities observed 
during cold work the jogs should move along the 
dislocation to parts having edge character rather 
than produce point defects. According to Friedel, 
in cubic crystals a more important mechanism of 
point defect production occurs each time a mobile 
dislocation loop cuts through an attractive tree 
of the dislocation forest. This model has been 
worked out in detail by Saada [120]. When a 
mobile loop meets an attractive tree, the reaction 
of Hirsch [121] will occur, and the loop will be 
divided into two parts separated by an immobile 
junction dislocation. If the Burgers vector of the 
tree is not parallel to the slip plane of the loop, 
the two parts of the loop will be in different slip 
planes. They subsequently bow out until they 
meet and recombine over a certain length x. It is 
shown that x is proportional to the size of the 
dislocation network l: 

x = AI. 

It is then easily seen that the concentration of 
point defects produced is given by 

e 

C ~ -~ ade, 

where G is the shear modulus and n and e are the 
plastic stress and strain respectively. Therefore, 
the point defect concentration produced by cold- 



working would be proportional to the work done. 
A different approach was applied by Feltham 

[122]. His model is that plastic deformation pro- 
duces a cell structure of dislocations, the cell size 
decreasing with increasing degree of cold-work. 
Point defects are produced by non-conservative 
motion of intersection jogs. The result is that the 
ratio of point defect concentration, C, and dis- 
location density A is constant during the deform- 
ation: 

C 
- -  ~ 2 0  b 2. 
A 

Feltham compares this result with experimental 
results of Kov/~cs et al. [123] on Ag and Yoshida 
et al. [124] on A1 and finds agreement of the ob- 
served C/A ratio with the calculated 20 b 2 within 
a factor of 10. However, Kov~ics [126] presented 
a simple model, with experimental proof, which 
leads to proportionality not only between the 
plastic work and point defect concentration but 
also between the plastic work and dislocation den- 
sity as well. 

8. The effect of point defects on the pro- 
perties of metals 

First we shall define two concepts related to the 
point defects, namely, the "core field" and the 
"far field" [127]. A localized arrangement of 
atoms not extending into the lattice in any direc- 
tion is usually called "point defect". More pre- 
cisely it can be called the "core field" of the defect 
comprising typically around 20 atoms. An atom- 
istic treatment is necessary to find the influence 
of the core field on physical properties of the cry- 
stal. A few interatomic distances from the centre 
of the core field, however, the atomic displace- 
ments are usually much smaller than the lattice 
parameter [91]. This region is called "far field" 
(Fernfeld) and it extends to the surface of the 
sample. To describe the far field effects, usually 
an elastic continuum model of the crystal is used 
in which the defect is replaced by an arrangement 
of double forces [128]. For example, the core 
field governs the scattering of conduction elec- 
trons and therefore the electrical resistivity, the far 
field gives rise to a volume change, and both far 
field and core field influence the elastic properties. 

Many physical properties are sensitive in varying 
degrees to the presence of point defects, and much 
of the research in the field stem from a need to 
know the relation between physical properties and 

imperfections in a crystal. Conversely, a structure- 
sensitive physical property can be used to investi- 
gate the nature, concentration, mobility and inter- 
action of defects: For example, point defects, and 
the distorted regions around them, scatter electrons 
and neutrons and thus manifest themselves in 
changes in electrical resistivity and neutron trans- 
mission. They also cause change in density, lattice 
parameter and energy content of the crystal, i.e. 
stored energy in the solid. Point defects interact 
with dislocations and thereby cause striking 
changes in the mechanical properties of a solid. 

The physical properties of the crystal can be 
separated into three groups: 

(1)Properties which are approximately pro- 
portional to the concentration or number of 
defects, e.g. the change of the residual electrical 
resistivity Ap is equal to the product of the defect 
concentration, CD, and the resistivity per unit 
concentration of defects, PD, which is a specific 
defect property directly related to the experi- 
mental data. It is connected with the more funda- 
mental scattering matrix elements for conduction 
electrons and thus with the scattering potential, 
which is based on the particle properties of the 
core field and the electron wave functions. 

Similar physical properties are: internal energy, 
stored energy, volume, lattice parameter, elastic 
modulus, internal friction, neutron scattering 
cross-section, heat conductivity, reciprocal high- 
field Hall coefficient. 

After quenching from high temperatures, single 
and multiple vacancies are present. The equilibrium 
concentration of vacancies can be calculated from 
combined lattice parameters and length measure- 
ments, and gives an upper limit of the total 
quenched-in concentration. The evaluation of speci- 
fic vacancy properties from high-temperature equi- 
libirum measurements suffers from the uncertainty 
of the "base line". 

(2) Another group of properties is independent 
of the concentration of the "predominant" defects 
and provides specific defect properties directly. 
Mainly transport properties belong to this group: 
low-field Hall coefficient, relative change of the 
electrical resistivity in a magnetic field, change of 
thermopower per resistivity change, relative devia- 
tions from Matthiessen's rule. 

(3) Finally, physical properties exist which 
depend in a complicated way on the mean concen- 
tration and distribution of the defects in the sample, 
e.g. partly elastic neutron scattering, magnetic pro- 
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perties of superconductors, partly internal friction 
(interaction of defects with dislocations), critical 
shear stress [129], etc. 

To avoid becoming involved in theoretical un- 
certainties, specific defect properties will be 
defined which are related as directly as possible to 
the experimental data (e.g. resistivity per unit 
concentration). Such defect properties are usually 
very complex on a theoretical viewpoint. We shall 
try to mention the relations between some defect 
properties and their connections with more funda- 
mental solid state parameters where it is possible. 

8.1. Transport properties 
Transport properties of solids due to the conduc- 
tion electrons include the electrical resistivity ten- 
sor in zero and finite magnetic field, thermal con- 
ductivity and thermoelectric power. The transport 
properties include also phonon thermal conduc- 
tivity (in connection with the phonon drag part of 
the thermoelectric power, and in superconductors). 
We shall discuss some of these properties on the 
basis of  the Boltzmann equation, which is suf- 
ficient for the comparatively low defect concen- 
tration in quenched metals and which can be 
solved numerically. 

8. 1.1. Electrical resistivity in zero magnetic 
fields 

8.1.1.1. Specific electrical resistivity o f  defects. 
For non-ferromagnetic cubic crystals with a ran- 
dom distribution of defects, which may have a 
non-cubic symmetry, the electrical resistivity is 
a scalar quantity. The contribution of point 
defects to residual resistivity depends upon the 
type of defect and on the kind of metal. The extra 
residual resisitivity due to point defects, following 
Mott and Jones [130], is given by 

2 ~ m ~  
Ap - An; 

ne  e2 

A = [ (1--cos 0)I(0)  sin 0d0, 
d 

(8) 

where m is the electron mass, v the velocity of 
the electrons at the top of the Fermi surface, 
ne the number of free electrons per atom, e the 
electron charge, n the atomic fraction of defects. 
A is the effective scattering area, and I(O) the 
intensity of the scattered wave in direction 0. The 
theoretical determination of the resistivity involves 
the calculation of A, which can be determined from 
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scattering theory [31 ] with the result that for free 
electron scattering 

47r 
A = ~-g )-', (l + 1) sin 2 (a, - -  at+l) ,  

l 

where k is the wave number at the Fermi level and 
is given by k = 2mv]h 2, and a z is the phase shift of 
order l evaluated from the asymptotic solution of 
the wave equation. A variety of scattering poten- 
tials may be used for the defects but, as shown by 
Friedel [9], the phase shifts of the plane waves 
representing the wave functions of the electrons 
and the charge, Ze required to screen the potential 
of the defect are related by the equation 

2 
Z = -- ~ (2l + 1)oq. (9) 

7~ 1 

Phase shifts calculated for any particular spherically 
symmetric potential must, therefore, obey the 
Friedel sum rule. 

T A B L E I V Calculated residual resistivity of  vacancies in 
some metals 

Metal Resistivity References 
(~2 cm/at. %) 

Aluminium 3.4 [ 132] 
Copper 1.7 [133] 

1.5 [134] 
Gold 1.5 [135,136] 
Silver 1.5 [135, 136] 

In Table IV we give some calculated values for 
the residual resistivity of vacancies in metals. Keller 
[137] carried out a calculation to estimate the 
resistivity of the vacancy~'and impurity in nearest- 
neighbour positions (pp~).  His result for silver 
impurities in gold is: 

Ppair = Pvac + Pimp - -  0.1 (Pva~ "Pimp)  1/2, 

and for zinc in gold it is 

Ppair = Pvae + P~p  + 0.1 (P~ac "Pirap) 1/2. 

This calculation involved the Born approximation 
and took into account lattice relaxation effects on 
the Friedel sum rule; consequently, the results are 
only approximate. 

8.1.1.2. Deviations from Matthiessen's rule (MR). 
In most studies of defects in metals, where the 
electrical resistivity is used as a measure of the 
defect concentration, MR is assumed to be valid, 



which means: 

p = po(~3 + p v  c v ,  (10) 

where Pv is the resistivity per unit concentration 
of vacant lattice sites. Although some deviation 
from Matthiessen's rule may, in general, be ex- 
pected, the deviations should be negligible for 
vacancy defects at 4.2 K. At 78 K, however, small 
deviations may occur [138,139].  Under most 
conditions, changes in residual resistivity may be 
related closely to the total quenched-in vacancy 
concentrations. 

8 .2.  V o l u m e  and lat t ice p a r a m e t e r  change  
In cubic crystals with a random distribution of 
defects, the following relations hold [140] : 

A V  3AI_ L CV CI "-}- CV g V "}- CI g I 
V l Vo Vo' 

(11) 

where AV/V is the relative change of volume of a 
finite sample, Alfl the relative change of length of 
the sample due to a concentration Cv and CI of 
vacancies and interstitials, V v ,  V1 are the volume 
changes of a finite sample due to the lattice dis- 
tortion in the far field of a vacancy and an inter- 
stitial, respectively [141]. The lattice parameter 
is defined for a homogeneous distribution of 
defects only, for which a new reference lattice 
for the crystal can be defined [142]. The relative 
lattice parameter change Aa/a is related to the 
lattice distortions by 

aa Vv v~ 
3 - -  = A  = Cv + CI (12) 

a Vo V0" 

The difference A -- L = CI - Cv is zero only for 
defect relations in which the number of lattice 
positions of the sample does not change. From 
equilibrium measurements of the lattice parameter 
and length as a function of temperature, v v can- 
not be exactly determined since the defect-free 
value of the thermal expansion (the "base line") 
is not known accurately enough. A detailed dis- 
cussion of the subject is given by Seeger [14]. 

Further information on lattice distortions can 
be obtained by elastic scattering of neutrons, which 
react only on lattice disorder. For a detailed dis- 
cussion of this point and examples on different 
metals see [127]. 

8.3. S to red  energy  
The change of the internal energy of a metal 
caused by point defects can be divided into two 
parts (actually the enthalpy is determined in 
principle, but the difference is negligible for our 
case): 

Q = C(ESD+E v)  = CED, (13) 

where Q is the heat release per atom due to dis- 
appearance of C defects per atom, E s the contri- 
bution of the static order and E v that of the 
vibrations and thermal excitations to the stored 
energy per defect. Interactions between defects 
are neglected or, if the interaction energy is not 
negligible.., a new defect type is defined (e.g. 
divacancies etc.). 

The stored energy can be measured by a variety 
of methods. The measurement must be made by 
measuring the heat released when a crystal, con- 
raining defects in excess of the thermodynamic 
concentration at a given temperature, is annealed 
at the same temperature to a state in which it 
contains only the thermodynamic equilibrium con- 
centration of defects. Since in many experiments, 
such as ~adiation damage or cold-work, more than 
one species of point defects is present, it is often 
desirable to obtain intermediate annealing stages 
of stored energy and to attempt to relate them to 
the disappearance of individual defects. The inter- 
mediate stages of energy release obtained in this 
manner cannot be precisely related to the number 
of defects multiplied by the formation energy be- 
cause no experimental reference state exists by 
which the stored energy can be evaluated. Thus, 
although characteristic annealing curves of stored 
energy of several defects are informative, the 
energies of formation thus obtained are not always 
reliable. 

8.4. Mechanical  p rope r t i e s  
The mechanical properties of metals are influenced 
in varying degrees by the presence of point defects. 
A variety of measurements have been used to study 
these effects which range from changes in the elas- 
tic moduli to changes in brittleness, i.e. from the 
smallest possible measurable strain to mechanical 
failure. This wide range of conditions is illustrated 
in Fig. 4 by a schematic stress-strain curve. At 
small strains the elastic moduli (and elastic sus- 
ceptibility) and small amplitude internal friction are 
the characteristic mechanical properties. As the 
strain is increased, the specimen often exhibits a 
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Figure 4 Schematic stress-strain curve for a typical metal, 
illustrating important mechanical phenomena. (After 
Damask and Dienes [85] ). 

yield point followed by a hardening region and 
eventual fracture. We shall try to discuss the rela- 
tions between the above mechanical properties 
and point defects. Many of the ideas involved in 
these treatments were originally developed for 
interpreting the influence of impurity atoms, 
solutes, and precipitation nuclei on the mechanical 
properties. 

8.4. 1. Elastic modulus and elastic sus- 
ceptibil i ty 

The reaction of a disordered lattice on applying 
static or low frequency (co ~ cog) dynamic stress 
can be described by the elastic modulus tensor M 
(coR is the resonance frequency due to the defect). 
The elastic susceptibility X of the defects is de- 
fined as the change of M induced by the presence 
of the defects and is also a tensor of the same type 
as M if the defects are distributed at random in 
the lattice [143]. Three different contributions to 
X are distinguished: 

(1) Defects can pin dislocations, which causes 
an increase in M. The best theory of this effect at 
present is that of Granato and Lucke [144], based 
on the earlier works of Friedel [145], Koehler 
[146], and Thompson and Holmes [147]. This 
theory gives the resulting modulus change by the 
relation 

2xC[G = K A ' L  2, (14) 

where A is the dislocation density, L is the average 
dislocation length between pinning points, and K 
is a constant. 

(2) If crystallographicaUy equivalent defect 

positions split in energy under the applied strain 
e, the defects redistribute themselves among the 
available positions with a certain relaxation time 
z. This gives rise to an additional length change and 
correspondingly to a modulus decrease. The 
"parelastic" susceptibility Xp is defined as the 
difference between the completely "relaxed" and 
"unrelaxed" modulus. 

The relaxation is, in general, correlated with an 
internal friction which can be used to evaluate the 
parelastic susceptibility [148]. 

(3) The elastic susceptibility is analogous to 
the electric susceptibility. Accordingly, a "di- 
electric" susceptibility Xd can be defined, a modu- 
lus change which is caused by the change of the 
density and the atomic interaction potentials of 
the crystal due to the defects [143]. 

8.4 .2 .  In torna l  f r i c t ion  
Excess vacancies affect internal friction in two 
ways: Zener relaxation and dislocation pinning. 
Zener relaxation is caused by the atomic rearrange- 
ment in an alloy associated with a change in the 
external stress. The concentration and mobility 
of vacancies determine the rate of relaxation. 
Hence, investigations of the Zener relaxation in 
quenched alloys give information on the properties 
of vacancies. For the application of the Zener 
relaxation to the study of vacancies, refer to dis- 
cussions by Nowick [149], Nowick and Seraphim 
[150], Cost [151], and Berry and Orehotsky 
[152]. 

Excess vacancies interact with dislocations or 
are annihilated at dislocations to form jogs. Thus, 
vacancies pin dislocations and thereby reduce their 
mobility. 

Levy and Metzger [153] found that the internal 
friction due to dislocation motion in aluminium 
was decreased by quenching. They considered that 
the quenching effect could not be attributed to 
quenching strains or to dislocation pinning by 
impurity atoms. The decrease in internal friction 
was most satisfactorily explained by quenched-in 
vacancies which migrated to dislocations and 
pinned them. 

Although internal friction is a useful tool in 
studying the vacancy-dislocation interaction, 
there is a disadvantage in that it is so sensitive to 
the overall condition of the specimen that it may 
be affected by small amounts of strain introduced 
by quenching and handling. 
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8.4.3. Hardening 
The development of our understanding of the 
increase in the yield stress due to rapid quenching 
(quench hardening) may be divided into two 
stages. In the first stage, that of the observation 
of quench-hardening, it was concluded that the 
aggregation of the quenched-in vacancies in the 
metal was the main cause of the hardening. This 
conclusion was confirmed by results from thin 
foil transmission electron microscopy. In the 
second stage, the mechanism of hardening was 
investigated in much greater detail, and the ex- 
perimental results were compared with obser- 
vations by transmission electron microscopy of 
the interaction of dislocations with vacancies 
and their aggregates. 

The experimental results on quench hardening 
may be summarized as follows: 

(1)Pure metals show appreciable hardening 
when quenched from high temperatures and aged 
under appropriate conditions. During the ageing, 
excess vacancies form clusters and/or annihilate at 
pre-existing dislocations. These effects are respon- 
sible for the hardening. In metals in which the 
vacancy migration energy is low, clustering and 
condensation may take place to such an extent as 
to cause hardening during handling after quench- 
ing. 

(2) No appreciable hardening is observed in 
polycrystalline specimens tested at room tempera- 
ture unless aged after quenching. It should be 
noted here, however, that gold single crystals show 
appreciable hardening without ageing when tested 
at liquid helium temperature [154]. 

(3) Two types of hardening are observed, de- 
pending on the quenching temperature. For 
quenching from high temperatures, age-hardening 
takes place at a high rate (with a small activation 
energy), and the amount of hardening increases 
with the quenching temperature. No over-ageing 
is observed. For quenching from below a certain 
temperature (which may depend on the purity of 
the specimen and the quenching rate), the rate of 
age-hardening is relatively slow. Over-ageing is 
observed in copper but not in gold. Mori et al. 
[106] investigated the hardening of gold quenched 
from 800, 750 and 700 ~ C. In all cases, the yield 
stress increased in the same manner as observed in 
specimens quenched from higher temperatures. 
This appears to be the only difference in the 
character of quench hardening in copper and in 
gold. 

On the basis of these observations, the mech- 
anism of quench hardening may be considered 
both in terms of the interaction of dislocations 
with vacancy clusters and of the jogs formed by 
condensation of vacancies on dislocations. Inter- 
action of dislocations with dispersed vacancies 
may be important at low temperatures. A more 
complete discussion of quench-hardening in 
metals is given by Kimura and Maddin [45, 155]. 

8.4.3.1. Mechanism of  dislocations-vacancy inter- 
actions and quench-hardening. Quenched-in va- 
cancies and vacancy clusters interact with moving 
dislocations and hinder their motion. In order to 
calculate the yield stress or critical resolved shear 
stress of a quench-hardened metal, one must first 
calculate the yield stress or critical resolved shear 
obstacle (dispersed vacancies or vacancy clusters 
of various forms) and the dislocations. If the inter- 
action energy as a function of the distance between 
the obstacle and the dislocation is known, the 
interaction force-distance curve can be calculated. 
Secondly, we must know the distribution of the 
obstacles, so that the external shear stress necessary 
to move dislocations through the obstacle may be 
determined. This stress is then the increase in the 
critical resolves shear stress by quench-hardening. 

Dispersed vacancies, as single vacancies, di- 
vacancies and perhaps small voids, interact with dis- 
locations in two ways: the first is where vacancies 
act as centres of interaction in which the vacancy 
retains its identity after the dislocation passes by 
and, the second where vacancies annihilate at dis- 
locations to form jogs on them when the vacancies 
have been swept up by the dislocations to change 
their configuration. 

Vacancy condensation onto dislocations also 
occurs during quenching whereby jogs are again 
formed. The fundamental mechanism of impeding 
the dislocation motion with jogs should be the 
same regardless of whether or not the jogs are 
formed by sweeping vacancies or by condensation 
of vacancies during quenching (except that the 
number and size of jogs continuously increases in 
the former case). 

The interaction force between the dislocation 
and vacancy clusters may be calculated if the 
stress field around the clusters is known. This 
calculation is possible in the case of dislocations 
loops and voids but at present it is possible to cal- 
culate only the overall interaction energy for 
stacking fault tetrahedra. 
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8.4.3.2. Solid solution hardening. We shall deal 
now with the influence of a second element on 
the mechanical properties of metals where foreign 
atoms are assumed to replace some atoms of the 
matrix. Cottrell [156], Parker and Hazlett [157], 
Suzuki [158] and Hibbard [159] have described 
results on polycrystals or on the yield stress of 
single crystals. Seeger [ 160, 161 ] gave a theoretical 
analysis of the stress-strain curve of pure fcc  
crystals while Haasen [162] extended this analysis 
to discuss the effect of alloying. He showed that 
one reason for alloy-hardening is the change in the 
mechanism of work-hardening with alloying, i.e. 
the change in dislocation width, interaction, 
arrangement, density, etc. No great increase in as- 
grown dislocation density on addition of solute is 
observed although it could be expected for very 
dilute alloys [160,161 ]. Most of the change of 
dislocation arrangement with alloying can be ex- 
plained in terms of a decrease in stacking fault 
energy. 

In addition to the change of dislocation struc- 
ture on alloying, there are also direct interactions 
between solute atoms and dislocations to be con- 
sidered. These can be subdivided into two groups: 
(a) dislocation locking: formation of solute atom 
clouds around dislocations at rest; (b) dislocation 
friction: effect of solute atoms on moving dis- 
locations. These mechanisms have been described 
by Haasen [162]. 

8.4.3.3. Precipitation-hardening. The formation 
of precipitates greatly increases the strength of an 
alloy. The increase in yield stress depends princi- 
pally on the strength, structure, spacing, size, shape 
and distribution of the precipitate particles as 
well as on the degree of misfit or coherency with 
the matrix and on their relative orientation. To 
understand precipitation-hardening one must study 
in detail the way in which dislocations interact 
with precipitate particles. Some fundamental in- 
vestigations of the dislocation precipitate inter- 
action in relatively simple alloys are described in 
papers by Kelly [163] and Gleiter and Hornbogen 
[164]. Hardness versus ageing time and X-ray dif- 
fraction results on alloys of commercial importance 
are well documented [165-167]. 

9. Formation of secondary defects due to 
quenched-in vacancies 

The behaviour of vacancies introduced by quench- 
ing has been extensively studied with various 

548 

methods such as the measurement of the electrical 
resistivity change and the direct observation by 
transmission electron microscopy of secondary 
defects which are formed by the clustering of 
vacancies. 

Panseri and Federighi [45] and Federighi 
[168] studied the annealing processes in quenched 
aluminium by measuring the electrical resistivity. 
They found two large isolated annealing stages 
during isochronal annealing. The first stage ap- 
peared at about O~ and the second at about 
160 ~ C. The first stage was considered to be a 
clustering process of vacancies and the second stage 
a dissociation process of secondary defects. 
Doyama and Koehler [169] carried out more 
detailed experiments and discussed this problem 
further. 

Silcox and Whelan [170] and Vandervoort and 
Washburn [171 ] studied the substructural change 
underlying the electrical resistivity change at about 
160 ~ C by electron microscopy and concluded this 
was caused by the disappearance of perfect pris- 
matic loops. 

Yoshida et al. [172] and Cotteritl and Segall 
[173] reported that a large number of Frank 
sessile loops were formed together with perfect 
prismatic loops in quenched super-pure A1, and 
Kiritani and Yoshida [174] and Kiritani [175] 
reported that voids were also formed. Yoshida 
and Shimomura [176] detected a new type of dis- 
location loops which they inferred were double 
layer stacking fault loops formed under a certain 
condition [177,178]. 

Doris Kuhlmann-Wilsdorf [179] reported that 
supersaturated vacancies in crystals may condense 
into single, double or triple layer discks, parallel 
to the most closely packed crystal planes. Once 
such discs exceed a critical diameter, their sides 
collapse and fuse again. The resultant defects are 
prismatic dislocations. These are of pure edge 
character when the collapse takes place without a 
tangential component. If, on the other hand, the 
collapse occurs with a tangential offset, which 
may be required in order to avoid gross faulting, 
then a partly mixed, partly edge-type dislocation 
loop results. Shimomura [180] studied further 
details of the annealing behaviour of secondary 
defects in quenched pure aluminium by electron 
microscopy. 

In the course of studying small vacancy clusters 
in quenched face-centered cubic metals, Yoshida 
and Kiritani [181] defined the so-called "pseudo- 



equilibrium" vacancy clusters. They described the 
change of the state of vacancy clusters during non- 
equilibrium process of vacancies by introducing the 
positive (growth) and negative (shrink) reaction 
ratios. The importance of the detailed analysis 
which follows the change of the annihilation pro- 
cess of highly supersaturated vacancies is empha- 
sized from the analysis of experiments on the 
nucleation process of dislocation loops, voids and 
stacking fault tetrahedra in quenched f c c  metals. 
The analysis indicates that most quenched-in 
vacancies are retained in small vacancy clusters and 
are dispersed later and finally absorbed to second- 
ary defects. The latter process is explained on the 
basis of statistical fluctuations in the cluster size 
distribution. 

9.1. The role of secondary defects in the 
quench-hardening of AI 

9. 1.1. Defects responsible for the hardening 
The quench-hardening in aluminium is less sensitive 
to quenching temperatures than that in some other 
metals including copper and gold. In quenched and 
aged aluminium, voids [174,175],  dislocation 
loops, both perfect prismatic loops and Frank 
sessile loops [173,178,182,  183] and heavily 
jogged dislocations [ 183] are seen. 

The conditions favouring particular defects 
[175] have to some extent been clarified. The 
number of loops increases with increasing quench- 
ing temperature while the number of voids de- 
creases. Hydrogen atoms in aluminium prevent 
the voids from collapsing to loops. Frank sessile 
dislocation loops, rather than perfect loops, are 
formed if quenching strains are minimized. Hence 
perfect loops predominate in specimens with rather 
large diameters while Frank sessile loops predomi- 
nate in thin wires or foils. Hardening in aluminium 
can be analysed in terms of both loops and voids. 

9. 1.2. Resoftening 
The recovery of the quench-hardened state has 
been widely investigated in aluminium. This sort 
of investigation is useful in identifying the defects 
responsible for the hardening if a comparison is 
made by transmission electron microscopy of the 
defects before and after softening. Rapid dis- 
appearance of prismatic loops in quenched alumi- 
nium was observed [170, 171] below 200 ~ C and 
dislocation lines also become straightened at these 
temperatures. 

Kino [184] investigated the resoftening of a 

quench-hardened aluminium together with the 
recovery of the electrical resistivity remaining 
after low temperature annealing, corresponding 
to the second stage as defined by Panseri and 
Federighi [41]. He found that the recovery of the 
yield stress depended on purity and quenching rate. 
The recovery of the yield stress in zone-refined 
high purity aiuminium coincided with the re- 
covery of the remaining resistivity and the dis- 
appearance of the prismatic loops was related to 
the hardness in the fully aged specimens. In less 
pure specimens (99.99%), however, the softening 
took place in two stages, the first at about 200 ~ C 
and the second at about 400 ~ C, considered to be 
due to the stabilization of dislocation loops by 
impurity atoms. Shin and Meshii [185] investi- 
gated the resoftening and elimination of disloca- 
tion loops in 99.999 pure aluminium. The loop 
density decreased rapidly near 100 ~ C, as shown 
in Fig. 5, while resoftening occurred in two stages, 
one from 100 to 220 ~ C and the other near 260 ~ C. 
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Figure 5 Resoftening of quench hardening in AI and the 
disappearance of dislocation loops by annealing for 
30 rain at the temperatures shown. (After Shin and Meshii 
[185]). o, yield stress; % loop concentration; annealing 
time 30 min. 

Instead of loops they found kinked dislocations 
after annealing above 180 ~ C; which they con- 
sidered to be formed at the expense of loops. The 
second stage of resoftening was thought to be due 
to -the straightening of these kinked dislocations 
which would be stabilized to some extent by im- 
purity segregation. 

9. 1.3. Main ideas for the loop hardening 
mechanism 

The hardening mechanisms are classified into two 
groups: temperature-independent and temperature- 
dependent. Jog formation and intermediate ledge 

549 



formation result in temperature- dependent harden- 
ing while other mechanisms determine tempera- 
ture-independent hardening. 

For unfaulted loops, the hardening is the sum 
of the elastic interaction hardening or the junction 
reaction hardening and the hardening due to jog 
formation. If dislocations can cross-slip easily, the 
junction reaction hardening is more important than 
the elastic interaction hardening. 

For faulted loops, the hardening is due to 
elastic interaction and cutting. The temperature- 
independent part consists of the elastic inter- 
action and complete ledge formation, and the 
temperature-dependent part consists of jog forma- 
tion and the interaction with ledge formation. 

At sufficiently low temperatures, the tempera- 
ture-dependent hardening becomes large and the 
stress required to cut loops may exceed the stress 
required to bow and to pass dislocation segments 
between loops (e.g. the Orowan stress). The yield 
stress in this case is, of course, determined by the 
Orowan mechanism and is temperature-indepen- 
dent. 

We shall summarize briefly the mechanisms 
which were reported by Kimura and Maddin [35] 
on aluminium. The basic experiments were due to 
Shiotani et at. [ 186] and Westmacott [187]. 

(1) Temperature-independent hardening due to 
loops. The observed temperature-independent 
hardening agrees, within a factor of two or three, 
with the theory based upon the interaction of loops 
and dislocations. In aluminium, the junction 
reaction hardening or the superjog formation seems 
to be more likely than the simple elastic inter- 
action. There is evidence for the reaction of dis- 
locations with loops. 

The observed hardening is usually somewhat 
larger than that predicted by loop hardening 
theories. One possible reason for this is that poly- 
crystalline specimens were used in most investi- 
gations. The existence of grain boundaries seems 
to mask a small amount of the hardening. For 
greater hardening than that due to the presence 
of grain boundaries, we may neglect grain-boundary 
effects in the discussion of the yield stress, as in 
the case of the precipitation hardening phenomena. 

(2) Temperature-dependent hardening due to 
loops. The agreement between theory and experi- 
ment is less satisfactory than for temperature4nde- 
pendent hardening. The loop cutting mechanism 

predicts too small a value for the yield stress. 
It was a~umed by Shiotani e ta l .  [1861 and 

Westmacott [187] that the temperature-depen- 
dence of the yield stress is controlled by a single 
activation energy. Mori and Meshii [188] empha- 
sized that the deformation in quench-hardened 
aluminium precedes the formation and growth of 
slip bands in which dislocation loops are elimin- 
ated, and that the contributions of these two pro- 
cesses to the deformation depend on the testing 
conditions. Certainly, the work-hardening of 
quench-hardened crystals should be interpreted in 
the light of both processes. 

10. Interactions of point defects 
Even during rapid quenches, some of the vacancies 
reach vacancy sinks and are annihilated there. 
Matters are further complicated because the meet- 
•ng of vacancies can lead to divacancies, which in 
turn may absorb a third and further vacancies to 
form trivacancies, tetravacancies, and clusters of 
still higher order. The analysis of this problem is 
quite complicated. Differential equations to des- 
cribe the kinetics of vacancies and their aggregates 
up to and including one type of tetravacancies have 
been derived [79,189],  but as yet they have only 
been solved and discussed for a few cases. 

10.1. Vacancy condensation on stationary 
dislocations 

For a long time it was believed that a supersatu- 
ration of thermal vacancies or interstitials would 
cause stationary unextended edge or mixed dis- 
locations to climb smoothly, always normal to their 
slip planes. Lately, however, Kuhlmann-Wilsdorf 
[190] showed that climb of extended stationary 
dislocation does not take place in this way. Instead, 
a preferred nucleation and subsequent growth of 
prismatic dislocation loops on close-packed planes 
in contact with pre-existing stationary edge and 
mixed dislocations seems to be the rule. As a result, 
jogged dislocations are created instead of smoothly 
curved ones as originally expected. 

A theory which would account for much of 
the experimental evidence on climbing dislocations 
was developed from a careful investigation of the 
binding energy between vacancies and dislocations 
[ 191 ]. [t is found that, through the elastic modulus 
effect, the vacancies are always attracted by the 
dislocations. 
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10.2. Vacancy condensation on moving 
dislocations 

Slow moving dislocations, or dislocations which 
have just stopped moving, appear to be much more 
efficient sinks for vacancies than stationary ones 
[183]. Moving dislocations apparently do not climb 
in the smooth way originally suggested but seem 
to absorb vacancies mainly through vacancy con- 
densation on the most closely packed places, where 
the dislocation axis happens to be parallel to those 
close packed planes [192]. 

10.3. Interaction between a vacancy and a 
solute atom 

Current theories of solute diffusion in metals 
require that vacancies have some interaction with 
solute atoms. Such interaction affects the formation 
and the migration of vacancies in metals, depending 
on the valence and the size of the solute atom. 

The equilibrium concentration of vacancies in a 
dilute homogeneous alloy is expressed as [193, 
194], 

C = CIv + Cvs (15) 

where 

Clv = (1 - Z X )  exp {S~v/k}" exp {--EFv/kT}, 

Cvs = ZX exp {(S~v + S~zs)/k}" 

exp {-- (E~v -- EBvs)/kT}. 

Clv and Cvs are the concentrations of free vacan- 
cies and of vacancies bound to solute atoms, 
respectively, Z is the co-ordination number (12 for 
fc  c and 8 for b c c metals), X is the solute concen- 
tration, E~Vv and S~v are the formation energy and 
entropy in the pure metal, and EBs and B Svs are 
the vacancy-solute binding energy and binding 
entropy change, respectively. This binding entropy 
SBs is the change in the formation entropy of a 
vacancy when bound to a solute atom. 

For example, when solute atoms having excess 
ionic charge are introduced into a metal, the neigh- 
bouring host atoms are repelled by the Coulomb 
force in addition to the usual closed-shell repulsion, 
thereby reducing the binding energy of these 
atoms. Lazarus [195] has pointed out that such 
decrease in the energy corresponds to the change 
in the energy required to form a vacancy at a site 
adjacent to the solute, which is none other than 
the binding energy between a vacancy and a solute. 
Theoretical estimates have also been made of the 
binding energy by Blatt [196], Alfred and March 

[197], Corless and March [198] and be Claire 
[199], but the agreement with experimental dif- 
fusion coefficients has been fairly poor. 

The theoretical values of E~rs are very small. 
Kim et al. [200] used a simple Thomas-Fermi 
screening model to calculate EBvs in the case of 
Al-Si  alloy. The screened Coulomb field due to 
the excess charge of the solute Zse, is given by 
V(r) = (Zse/r) exp {--qr}, where q is the Thomas-  
Fermi screening parameter. Then the vacancy- 
solute binding energy (the negative of the inter- 
action energy) is 

Z s �9 Z V e 2 
EBs -- exp {--qro}, (16) 

ro  

where Z v  is the charge of the vacancy and r0 is 
the nearest neighbour distance. In this model the 
vacancy-solute interaction is always attractive 
(EBs < 0). For example, in the case of Al-Si alloy 
r 0 = 2 . 8 6 A ,  q = 2 .12(A)-I ,Zs  = 1 a n d Z v  = - - 3 ,  
we have E~rs = 0.35 eV. 

Damask and Dienes [85,201] considered the 
simple annealing reactions of vacancies to sinks in 
the presence of solute atoms: 

K1 K3 
Cv + Cs ~---~ C e, Cv ~" sinks, 

K2 

where Cv, Cs, Ce are the concentration of free 
vacancies, unbound solute atoms and vacancy-  
solute complexes, respectively, and K's are the rate 
constants. From the integration of the correspond- 
ing differential equations, they have suggested that 
the binding energy can be determined from the 
comparison of the rate constants of annealing of 
quenched4n vacancies in both pure and impure 
metals. On these lines, Cattaneo and Germagnoli 
[202] determined the binding energy between a 
vacancy and silver atom to be about 0.3 eV for 
dilute gold-silver alloys. 

If the rate of ageing is proportional to the con- 
centration of excess vacancies, the "effective" 
formation energy of vacancies in an alloy can be 
determined from the rate of ageing after quenching 
from high temperatures. Silcox [203] has suggested 
that the rate of re-ageing after quenching from the 
reversion temperature can also be used for the 
same purpose. Thus measurements of the rate of 
ageing and re-ageing for a wide range of tempera- 
tures lead to the evaluation of the apparent form- 
ation energy and hence the binding energy. This 
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principle has been used to determine the binding 
energies in binary aluminium alloys with or without 
addition of a small amount of  third elements by 
Panseri and Federighi [204], Turnbull and Cormia 
[205], Kimura et al. [206,207],  Hashimoto and 
Ohta [208] and other investigators (see, for 
example, the data collected by Takamura [209]). 

Electron microscope observations may also give 
knowledge on the binding energy. The vacancy- 
solute binding affects the diffusion rate of vacan- 
cies, thereby varying the climb rate of dislocations. 
Eikum and Thomas [210], and Embury and 
Nichols0n [211] thus estimated the vacancy- 
magnesium binding energy to be ~ 0.1 to 0.4 and 
~0 .3  to 0.4eV, respectively. Thomas[212],  
measuring the vacancy concentration from the 
density and size of dislocation loops in quenched 
aluminium alloys, suggested that the binding 
energies were expected to increase in the order Zn, 
Mg, Ag, Cu. Alternatively, according to Westmacott 
et al. [213 ] the order is Zn, Cu, Ag, Mg, Si. 

The above results indicate the presence of 
appreciable binding energies between vacancies 
and solute atoms. However, they do not necessarily 
show the true binding energy, since the vacancy- 
solute binding entropy has been completely ignored 
and also the assumptions made concerning physical 
properties (e.g., the electrical resistivity contri- 
bution) of the defects involved are not unambig- 
uous. There is, however, a quenching experiment 
which can give the binding energy as well as the 
binding entropy change, based on a fairly firm 
ground [214]. The method consists of achieving 
an alloy condition in which all vacancies are bound 
to impurity atoms. 

Another type of experiment from which both 
E~s and S,~s can be determined correctly, at least 
in principle, is the measurement of the equilibrium 
concentration of vacancies in dilute alloys. Precise 
measurements were made by Beaman et aL [215], 
on the differential length expansions [(AL'/L') -- 
(ALo/Lo)] and differential X-ray lattice parameter 
expansions [(Aa'/a') -- (Aao/ao)] between speci- 
mens of pure aluminium and the alloys during 
slow reversible heating and cooling. They used their 
data to determine absolute differences between 
the equilibrium vacancy concentrations in the 
dilute alloys and the pure metal from the relation 

aC v  = C~ -- C,~ = (17) 

= 3  E T2o - - a o / j '  
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where the primes and superscript zeros refer to the 
alloy and the pure metal, respectively. If the 
vacancy concentration in pure metal, C ~ is known, 
the concentration in the alloy, Cv, is then deter- 
mined, from which E~s and S~s are obtained. 

There are a few attempts to find an empirical 
relation from the published data for the vacancy- 
solute binding energy. Hasiguti [216, 217] suggested 
a relationship consisting of two terms involving the 
size and the valence of solute atoms in aluminium. 
However, the position of solute atoms within a 
group in the periodic table was ignored, and it is 
difficult to distinguish the difference between 
solutes as gold and silver which have almost the 
same size and the same valence. Hasiguti's modified 
formula is: 

d -- dA1 
EB = E o + ( Z s  --ZA1)Ez +- -  --Ed, (18) 

dA1 

where E B is the binding energy, Eo, Ez and Ea are 
constant with the dimension of energy, Z s and ZAI 
are the valencies of  solute and aluminium atoms 
respectively, and d and dA1 are the atomic diameters 
of solute and aluminium atoms, respectively. 

Doyama [218] considered that the solubility 
limit of impurities in the matrix might be a good 
measure of the property of solute atoms, and thus 
found a relationship for aluminium alloys in a 
simple form as 

E~rs = --a  log Cs + b (19) 

where Cs is the solute concentration at the solu- 
bility limit in the binary alloy system, and a and b 
are constants. If the solubility at temperature Tis 
expressed in terms of the heat of solution, H, as 

Cs/(1 -- Cs) = A exp {--H(1 - 2Cs)/kT}, 

where A is a constant related to the vibrational 
entropy [219], the following relationship can be 
obtained by combining with Equation 19: 

E~rs ~ gH, 

where g is a constant which is ~ �89 [218]. 
Seeger [220] has suggested that the vacancy- 

solute binding energy and the binding entropy 
change can be calculated semi-empirically within 
the framework of the nearest neighbour interaction 
in the following way. Consider a vacancy sur- 
rounded entirely by solvent (A) atoms in a dilute 
alloy. If the vacancy is moved to a site at which 
one of the nearest neighbour atoms is a solute (B) 
atom, the change in free energy may be given by 



the difference in the free energies between A - A  
and A-B  bonds as 

G = GAA - -  G A B  = - -  G B ,  

where GB is the vacancy-solute binding energy. 
This simple nearest neighbour interaction model 
leads to the expressions: 

E~, s = ( H e - - I - I  c - - I - IS) / z ,  (20) 

S ~ s  = - A s  - ( S A  - -  SB)/Z, 

where H c is the cohesive energy, H s the heat of 
solution of solute atoms to the pure metal, AS the 
entropy change due to the solution of a solute 
atom, SA and SB the standard entropies of the pure 
metals A and B which can be evaluated from 
thermodynamic data, Z the number of nearest 
neighbour atoms, respectively. Seeger actually 
calculated the values of E~s and B Svs for some 
dilute aluminium alloys, for example, in the case 
of AI -Zn  system, E~rs = 0.17 eV and S~rs = 0.35k. 

1 1. S o m e  general  ideas  a b o u t  p o i n t  d e f e c t s  
To interpret properties of point defects in metals, 
various theoretical models have been constructed. 
When looking at a vacancy (Fig. 6) or an interstitial 
(Fig. 7) in motion through a crystal, one might 
focus the attention on the nuclei, and try to com- 
pute the atomic configurations and the energies 
involved, assuming simple phenomenological but 
reasonable interatomic forces and potentials. These 
forces are related to the electronic structure of the 
metal, which is locally perturbed, owing to the 
scattering of electrons by the defects. Thus, as 
often in solid state physics, simple mechanistic 
models have been developed in parallel with models 
which go deeper into the electronic structure of 

�9 Q �9 �9 �9 0 �9 0 

�9 �9 0 �9 t �9 �9 0 0 D 0 
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Figure 6 Vacancy: (a) full, (b) split. 

�9 �9 �9 �9 �9 �9 0 �9 

0 0 0 �9 �9 �9 0 O 0  

a 

Figure 7 In t e r s t i t i a l :  (a) full ,  (b) spli t .  

the metal. 
Friedel analysed both types of model [221]. 

He concluded that they are often complementary 
rather than competitive, and also that, at least in 
some simple cases such as light "normal" metals, 
there is now some hope of combining the two kinds 
of approaches into a more self-consistent descrip- 
tion. We shall try to give briefly his main ideas. 

1 1.1 Continuum elasticity 
The simplest "mechanistic" model treats a defect 
as a part of an elastic continuous medium but with 
its own size, form and elastic constants, stuck to 
the wall of a cavity V, of possibly different size 
and form. According to this model, the presence 
of vacancies should not produce any strain. Thus 
no change in lattice parameter should be observed; 
the only change in total volume, when a vacancy is 
created, should come from the atom extracted 
from the vacant site and added at the surface. 
Thus the relative decrease in density should be 
equal to the atomic concentration of vacancies. If 
anharmonic terms are neglected, the activation 
volume for vacancy creation should just equal the 
atomic volume; the activation volume for vacancy 
motion should be zero. 

According to this model the stored elastic energy 
for a vacancy is zero while for interstitials it is of 
the order of 

U -~ �89 2 V, (21) 

where e is the shear strain necessary to adapt the 
defect to its cavity and E the corresponding elastic 
constant. With respect to the coupling between 
point defects, vacancies and full interstitials have 
no elastic interactions. They attract each other 
with a force varying as r -7. 

More realistic model is obtained for a vacancy if 
it is treated as an elastic inhomogeneity [191 ]. 

1 1.2. Model interatomic potentials 
To construct a model suitable for defect calculation 
a lattice energy function must be defined. This 
function depends on the position of all the atoms 
in the lattice. 

These models usually assume that the lattice 
energy can be split into a sum of pair potentials, 
the atoms interacting with each other by two body 
forces which depend only on the interatomic 
distance with a long-range exponential decrease 
which affects only very few neighbours (Fig. 8a 
and b, [222]). 
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Figure 8 Schematic illustration of pair interaction po- 
tentials V(r). (a) Form in common use; (b) very short- 
range form. 

The main two body forces are generally applied 
only within a small part of the crystal, and the 
effect of the remaining part can be taken into 
account by suitable boundary conditions. A 
detailed description of the subject is recently given 
by Johnson [223]. 

This leads to the problem of the boundary con- 
ditions. The main interest of such computations is 
to give a detailed description of the atomic distri- 
bution in the immediate neighbourhood of the 
defect and for this, a microcrystal of typically 2000 
to 3000 atoms is considered. Defects are introduced 
near its centre and only push the self-consistency 
of the computed displacements far enough from 
the defect to be within their limits of accuracy. In 
most cases, the size of the computed relaxed zone 
is definitely smaller than the size of the crystal. It 
is then clear that the exact nature of the boundary 
conditions is of no importance. The surface atoms 
can be free to move or be blocked on their lattice 
positions. But it is also clear that such compu- 
tations cannot give any results on the long range 
distortions, or on the activation volumes of the 
defects. To describe more correctly these long range 
strains, intermediary models have sometimes been 
used [224], where a very few atoms at the core of 
the defect have been treated by pair potentials. 
This core interacts elastically with the surrounding 
matrix, which is treated as an elastic continuum. 

To construct reasonable pair potentials they are 
adjusted to match various physical properties of 
the metal. For example the widely used Morse 
potential: 

V(r) = D[exp {--2a(r- -  ro)} 

- -2  exp {--a( r - -  ro)}] (22) 

contains three numerical parameters D, a, ro, which 
can be determined as follows. For this potential, 
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the total lattice energy q~ is given by 

0 = 1ND ~ [exp {-- 2oe(rj -- ro)} 
J 

-- 2 exp {--ee(rj -- ro)}], 

where rj is the distance from the origin to the jth 
atom, and N is the total number of atoms in the 
lattice. 

If this energy is calculated for a crystal with 
r i = Mia, where a is the experimental value of the 
lattice parameter, then it must be equal to the 
experimental energy of sublimation Es,  extrapo- 
lated to zero temperature and pressure, that is 

~(a)  = E s ( a ) .  

The equilibrium condition requires that 

dr --0. 
Finally it can be shown that ~ is related to the 
compressibility KB as: 

( d Jt ~ KB 

With the use of these three equations the numeri- 
cal values of the constants have been determined 
for many metals [225]. 

1 1.3. Electronic structure 
The first treatments of scattering by point defects 
consider the valence electrons of the metal as free 
and neglect the details of its atomic structure. As 
for impurities in general, one can distinguish three 
factors, valence, period and size, and assume that 
the first predominates [226]. 

It is usually sufficient to treat this scattering 
within first order perturbation. Owing to this 
"valence" effect, the scattering by a vacancy or an 
interstitial is roughly equivalent to the valence of 
the metal. 

The lattice distortions around the defects thus 
alter the scattering in two ways: 

(1) the local concentration or dilatation alters 
the local density of ionic charge, thus the effective 
valency of defect (so called Harrison-Blatt correc- 
tion [227] ); 

(2) the local variations of strain can cause similar 
effect to phonon scattering. 

Both these effects cause only slight corrections; 
therefore, the residual resistivity of vacancies and 
interstitials should be comparable, and correspond 



to scattering cross-sections of atomic dimensions. 
The formation energy for vacancies should be 

directly related to the Fermi energy, a result which 
gives reasonable values only for monovalent metals 
[8]. 

Finally, as for any local imperfections, the self- 
consistent perturbing potential V(r) around a point 
defect should die out at long range with oscillations 
which are related to the Fermi wavelength (Fig. 9). 
Within the first order perturbation scheme the 

0 r v 

where Clv and Dlv  are the concentration and the 
diffusion coefficient of monovacancies, and a is a 
geometrical factor. The solution of this equation 
gives a simple exponential vacancy decay, namely, 

Clv(t)  = C lv (0 ) ' exp  {-- a/) lv t }. 

Another way of approaching the above problem 
is to make use of diffusion theory, treating the 
whole crystal as a continuum but taking into 
account a concentration gradient near the sinks. 
We have then 

aC~v(X, t) 
- Dlv 'V2Clv(X, t). 

Ot 

In general, the solutions can be represented as a 
sum of exponentials with different time constants 
T m . 

If  we consider divacancies also, we may set up 
the differential equations 

Figure 9 Perturbing potential due to a vacancy in a free 
electron model. (After D6plant6 and Blandin [228] ). 

following summary [228] can be made: 
(1) the value of V at the neighbour distance b 

gives the electronic part of the energy of interaction 
with substitutional impurities; 

(2) the slope (dV/dr)r= b at that distance gives 
the force acting on the neighbours due to the 
presence of the defects; and 

(3) the curvature (d2V/dr2)r=b gives the change 
of elastic constants due to the defects. 

12. Some annealing equations describing 
the behaviour of vacancies in quenched 
metals 

At low quenched-in vacancy concentrations, where 
one would expect simple annihilation of mono- 
vacancies at inexhaustible sinks, small amounts of 
highly mobile defect clusters, e.g. divacancies, can 
have no marked effect upon the annealing kinetics. 
At high vacancy concentrations, the clustering of 
vacancies becomes important and small amounts 
of impurities have significant effects on annealing 
behaviour. If we consider a simple system in which 
monovacancies are the only point defects present, 
the vacancies anneal out at dislocations, grain- 
boundaries, etc. This problem may be treated 
simply by applying the chemical rate equation in 
the form [229,230] : 

dCtv /d t  = - - ( y A ~ l V ' f l v  , 

dCtv /d t  = 2K2C2v -- 2KIC~v - - K 3 C 1 v  , 

dC2v/dt  = K1C2v -- KzC2v -- K4C2v,  

where K n are reaction constants. If only inter- 
actions between nearest neighbours are considered, 
the K's are written as 

Kt = 84vM'exp  { - -EM/kT} ,  

K2 = 14Vzv "exp {-- (EMv + EBv)/kT},  

K3 = aiD1 and K 4  = o ~ 2 D z v .  

K1 determines the formation rate of Vz and Kz ,  
the dissociation rate of V2, ~n is a function of the 
sink density, and the u is a frequency factor. 

Generally, the equations which describe the 
microscopic behaviour of the sample are compli- 
cated. In the resistivity measurements on f c c  
metals Koet/ler [231 ] wrote these equations as: 

Ap = a l c t + a 2 c 2 + a 3 c 3 +  ... + a n t  n + . . . ,  

where the ci(r, t) represent the fractional concen- 
trations of the various defects present. The ai is a 
measure of the contributions of the various defects 
to the resistivity. Changes of defect concentrations 
with space and time are described by a series of 
coupled differential equations, usually non-linear, 
which were given by Doyama [76]. 

13. Conclusions 
In this review an attempt has been made to discuss 
briefly some of the more important aspects of the 
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characteristics and behaviour of point defects in 
metals. Some large areas, including the role of point 
defects in high temperature deformation and in 
irradiation damage, have been deliberately omitted. 
The review has mainly been concentrated on 
vacancies since these defects play a major role in 
many physical processes of technological import- 
ance. Although very significant progress has been 
made over the past 25 years, it is clear that many 
questions remain unanswered both from theoretical 
and experimental points of view. 
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